This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308987 #19 Sep 27 2024 17:25:59 %S A308987 1,2,4,10,14,16,20,34,40,46,88,100,112,130,152,212,288,330,346,444, %T A308987 502,526,534,564,580,614,624,634,636,640,690 %N A308987 In the sequence {n^2+1} (A002522), color the primes red. When the number of terms m between successive red terms sets a new record, write down m+1. %C A308987 This sequence represents the highest gaps, given by number of terms (including the starting prime) in sequence A002522 between terms which are prime. %e A308987 n=6 --> 6^2+1 = 37, prime %e A308987 n=7 --> 7^2+1 = 50, composite %e A308987 n=8 --> 8^2+1 = 65, composite %e A308987 n=9 --> 9^2+1 = 82, composite %e A308987 n=10 --> 10^2+1 = 101, prime %e A308987 ...so here m=3 and we get the third term, m + 1 = 10 - 6 = 4 %t A308987 best = c = lastBestAt = 0; %t A308987 For[i = 2, True, i += 2; c += 2, %t A308987 If[PrimeQ[i^2 + 1], %t A308987 If[c > best, %t A308987 best = c; %t A308987 bestAt = i - c; %t A308987 If[bestAt != lastBestAt, Print[{c, bestAt}]]; %t A308987 lastBestAt = bestAt; %t A308987 ]; %t A308987 c = 0; %t A308987 ] %t A308987 ] %t A308987 Join[{1,2},Rest[DeleteDuplicates[Length/@SplitBy[(Range[5*10^7]^2+1),PrimeQ],GreaterEqual]+1]] (* The program generates the first 19 terms of the sequence. *)(* _Harvey P. Dale_, Sep 27 2024 *) %Y A308987 Cf. A002496, A002522, A308988. %Y A308987 A293564 gives essentially the same information. %K A308987 nonn,more %O A308987 1,2 %A A308987 _Trevor Cappallo_, Jul 04 2019 %E A308987 a(21)-a(31) from _Giovanni Resta_, Jul 05 2019