cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309002 Multiplicative with a(p) = p^2 and a(p^e) = p^a(e) for any e > 1 and prime number p.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 512, 81, 100, 121, 144, 169, 196, 225, 65536, 289, 324, 361, 400, 441, 484, 529, 4608, 625, 676, 19683, 784, 841, 900, 961, 33554432, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 12800, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 589824
Offset: 1

Views

Author

Rémy Sigrist, Jul 05 2019

Keywords

Comments

To compute a(n): square every prime number at leaf position in the prime tower factorization of n (the prime tower factorization of a number is defined in A182318).
For any n > 0, a(n) is the least k such that A308993(k) = n.

Examples

			See Links section.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, f[i, 1]^if (f[i, 2]==1, 2, a(f[i, 2])))

Formula

A308993(a(n)) = n.
A185102(a(n)) = 1 + A185102(n) for any n > 1.
a(n) >= n^2 with equality iff n is cubefree (A004709).