This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309007 #28 Jul 09 2019 21:32:45 %S A309007 29,9,10,8,4,8,5,3,1,0,4,4,5,1,5,6,4,3,1,3,3,4,3,4,1,3,2,3,1,2,4,2,1, %T A309007 3,2,2,5,1,1,3,2,2,4,1,1,1,4,4,1,2,2,2,2,2,1,2,1,3,1,2,1,1,2,1,3,1,1, %U A309007 3,1,2,2,3,2,3,3,0,2,2,1,1,2,1,3,1,2,2 %N A309007 Largest k such that n^k has distinct digits in base 10 (for n>1). %F A309007 a(n) = 0 for any n > 9876543210. - _Rémy Sigrist_, Jul 06 2019 %e A309007 For n = 2, 2^29 = 536870912, which is the largest power of 2 to contain distinct digits. %t A309007 a[n_] := SelectFirst[ Range[ Floor@ Log[n, 10^10], 0, -1], (Sort[#] == Union[#]) &@ IntegerDigits[ n^#] &]; Array[a, 86, 2] (* _Giovanni Resta_, Jul 07 2019 *) %o A309007 (Python) %o A309007 def distinct_digits(n): %o A309007 p = math.floor(math.log(10**10)/math.log(n)) %o A309007 while p >= 1: %o A309007 d = n**p %o A309007 if len(set(str(d))) == len(str(d)): %o A309007 return(p) %o A309007 else: %o A309007 p = p - 1 %o A309007 return(0) %o A309007 (PARI) a(n) = forstep (k=logint(10^10, n), 0, -1, my (d=digits(n^k)); if (#d==#Set(d), return (k))) \\ _Rémy Sigrist_, Jul 06 2019 %Y A309007 Cf. A010784. %Y A309007 For n=2, see A084688 and A260814. %K A309007 nonn,base %O A309007 2,1 %A A309007 _Tom Bryan_, Jul 05 2019 %E A309007 More terms from _Rémy Sigrist_, Jul 06 2019