A309037 Exponential Demlo sequence, like 12345...54321, but for powers of 2 instead.
2, 242, 24842, 2496842, 249936842, 24998736842, 2499974736842, 249999494736842, 24999989894736842, 2499999797894736842, 249999995957894736842, 24999999919157894736842, 2499999998383157894736842
Offset: 1
Examples
For n = 4: 2000000 8 - 2 = 6 400000 80000 16000 4 - 1 = 3 800 40 + 2 ------- 2496842 For n = 12: 2*10^(24-2) + 4*10^(24-3) + 8*10^(24-4) + ... + 4096*10^11 + ... + 8*10^2 + 4*10^1 + 2 20000000000000000000000 24 - 2 = 22 4000000000000000000000 800000000000000000000 160000000000000000000 32000000000000000000 6400000000000000000 1280000000000000000 256000000000000000 51200000000000000 10240000000000000 2048000000000000 409600000000000 12 - 1 = 11 20480000000000 1024000000000 51200000000 2560000000 128000000 6400000 320000 16000 800 40 + 2 ----------------------- 24999999919157894736842
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (121, -2120, 2000).
Formula
a(n) = 2^1*10^0 + 2^2*10^1 + ... + 2^(n-1)*10^(n-2) + 2^n*10^(n-1) + 2^(n-1)*10^n + 2^(n-2)*10^(n+1) + ... + 2^2*10^(2n-3) + 2^1*10^(2n-2).
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: 2*x*(1 - 10*x)*(1 + 10*x) / ((1 - x)*(1 - 20*x)*(1 - 100*x)).
a(n) = (-80 - 3*4^n*5^(1+n) + 19*100^n) / 760.
a(n) = 121*a(n-1) - 2120*a(n-2) + 2000*a(n-3) for n>3.
(End)
Comments