cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309041 Irregular table read by rows: Let P(n,x) be the (monic) minimal polynomial of 2i*cos(Pi/n), where i = sqrt(-1) is the imaginary unit, then a(n,k) = [x^(2k)] P(n,x), n >= 3.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 6, 5, 1, 2, 4, 1, 1, 9, 6, 1, 5, 5, 1, 1, 15, 35, 28, 9, 1, 1, 4, 1, 1, 21, 70, 84, 45, 11, 1, 7, 14, 7, 1, 1, 24, 26, 9, 1, 2, 16, 20, 8, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 3, 9, 6, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1
Offset: 3

Views

Author

Jianing Song, Jul 08 2019

Keywords

Comments

For n >= 3, it is easy to see that [x^(2k+1)] P(n,x) = 0, so they are omitted.
Row n (n >= 3) has length A023022(n) + 1 = phi(n)/2 + 1.
Let {U(n,x)} be defined as: U(0,x) = 0, U(1,x) = 1, U(n,x) = x*U(n-1,x) + U(n-2,x) for n >= 2, then U(n,x) = Product_{k|n, k>=2} P(k,x) for n > 0, because U(n,x) = Product_{m=1..n-1} (x - 2i*cos(Pi*m/n)) for n > 0.

Examples

			P(1,x) = x^2 + 4;
P(2,x) = x;
P(3,x) = x^2 + 1;
P(4,x) = x^2 + 2;
P(5,x) = x^4 + 3x^2 + 1;
P(6,x) = x^2 + 3;
P(7,x) = x^6 + 5x^4 + 6x^2 + 1;
P(8,x) = x^4 + 4x^2 + 2;
P(9,x) = x^6 + 6x^4 + 9x^2 + 1;
P(10,x) = x^4 + 5x^2 + 5;
...
		

Crossrefs

Cf. A232624.
Cf. P(n,k): A061446 (k=1), A008555 (k=2), A253807 (k=3);
Cf. also A023022, A008683.

Programs

  • Mathematica
    ro[n_] := (P = CoefficientList[p = MinimalPolynomial[2*I*Cos[Pi/n], x], x^2]; P); Flatten[Table[ro[n], {n, 3, 30}]]
  • PARI
    U(n) = sum(i=0, (n-1)/2,binomial(n,2*i+1)*(poly/2)^(n-2*i-1)*((poly^2+4)/4)^i)
    P(n) = if(n==1, poly^2+4, my(v=divisors(n)); prod(i=1, #v, U(n/v[i])^moebius(v[i])))
    a(n,k) = polcoeff(P(n),2*k)

Formula

P(n,x) = Product_{0<=m<=n, gcd(m, n)=1} (x - 2i*cos(Pi*m/n)).
Equivalently, P(n,x) = Product_{0<=m<=n/2, gcd(m, n)=1} (x^2 + 4*cos(Pi*m/n)) for n != 2. This shows that all terms are positive.
P(n,x) = Product_{k|n} U(n/k,x)^mu(k), mu = A008683.
Let MPR2(n,x) be the (monic) minimal polynomial of 2*cos(2*Pi/n) as defined in A232624, then: for even n > 2, P(n,x) = MPR2(2n,i*x)*(-1)^A023022(n); for odd n, P(n,x) = MPR2(n,i*x)*MPR2(2n,i*x)*(-1)^A023022(n), i = sqrt(-1).
For n > 2, P(n,x) = MPR2(n,-x^2-2)*(-1)^A023022(n).
For n > 1, P(n,1) = A061446(n), P(n,2) = A008555(n), P(n,3) = A253807(n), ...
For even n > 2, a(n,k) = (-1)^(A023022(n)-k)*A232624(2n,2k).