This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309049 #53 Feb 16 2025 08:33:55 %S A309049 1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,3,3,2,1,1,1,3,4,4,2,1,1,1,4,6,6,5,2, %T A309049 1,1,1,4,7,8,7,5,2,1,1,1,5,10,12,11,8,5,2,1,1,1,5,11,16,17,13,9,5,2,1, %U A309049 1,1,6,15,23,27,24,16,10,5,2,1,1,1,6,16,27,34,34,27,18,11,5,2,1,1 %N A309049 Number T(n,k) of (binary) max-heaps on n elements from the set {0,1} containing exactly k 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A309049 Also the number T(n,k) of (binary) min-heaps on n elements from the set {0,1} containing exactly k 1's. %C A309049 The sequence of column k satisfies a linear recurrence with constant coefficients of order A063915(k). %H A309049 Alois P. Heinz, <a href="/A309049/b309049.txt">Rows n = 0..200, flattened</a> %H A309049 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A309049 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %F A309049 Sum_{k=0..n} k * T(n,k) = A309051(n). %F A309049 Sum_{k=0..n} (n-k) * T(n,k) = A309052(n). %F A309049 Sum_{k=0..2^n-1} T(2^n-1,k) = A003095(n+1). %F A309049 Sum_{k=0..2^n-1} (2^n-1-k) * T(2^n-1,k) = A024358(n). %F A309049 Sum_{k=0..n} (T(n,k) - T(n-1,k)) = A168542(n). %F A309049 T(m,m-n) = A000108(n) for m >= 2^n-1 = A000225(n). %F A309049 T(2^n-1,k) = A202019(n+1,k+1). %e A309049 T(6,0) = 1: 111111. %e A309049 T(6,1) = 3: 111011, 111101, 111110. %e A309049 T(6,2) = 4: 110110, 111001, 111010, 111100. %e A309049 T(6,3) = 4: 101001, 110010, 110100, 111000. %e A309049 T(6,4) = 2: 101000, 110000. %e A309049 T(6,5) = 1: 100000. %e A309049 T(6,6) = 1: 000000. %e A309049 T(7,4) = T(7,7-3) = A000108(3) = 5: 1010001, 1010010, 1100100, 1101000, 1110000. %e A309049 Triangle T(n,k) begins: %e A309049 1; %e A309049 1, 1; %e A309049 1, 1, 1; %e A309049 1, 2, 1, 1; %e A309049 1, 2, 2, 1, 1; %e A309049 1, 3, 3, 2, 1, 1; %e A309049 1, 3, 4, 4, 2, 1, 1; %e A309049 1, 4, 6, 6, 5, 2, 1, 1; %e A309049 1, 4, 7, 8, 7, 5, 2, 1, 1; %e A309049 1, 5, 10, 12, 11, 8, 5, 2, 1, 1; %e A309049 1, 5, 11, 16, 17, 13, 9, 5, 2, 1, 1; %e A309049 1, 6, 15, 23, 27, 24, 16, 10, 5, 2, 1, 1; %e A309049 1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1; %e A309049 ... %p A309049 b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand( %p A309049 x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n))) %p A309049 end: %p A309049 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): %p A309049 seq(T(n), n=0..14); %t A309049 b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^Floor[Log[2, n]]]]; %t A309049 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]]; %t A309049 T /@ Range[0, 14] // Flatten (* _Jean-François Alcover_, Oct 04 2019, after _Alois P. Heinz_ *) %Y A309049 Columns k=0-10 give: A000012, A110654, A114220 (for n>0), A326504, A326505, A326506, A326507, A326508, A326509, A326510, A326511. %Y A309049 Row sums give A091980(n+1). %Y A309049 T(2n,n) gives A309050. %Y A309049 Rows reversed converge to A000108. %Y A309049 Cf. A000225, A000295, A003095, A024358, A056971, A063915, A137560, A168542, A202019, A309051, A309052. %K A309049 nonn,tabl %O A309049 0,8 %A A309049 _Alois P. Heinz_, Jul 09 2019