This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309053 #48 Nov 29 2024 17:55:51 %S A309053 1,0,1,0,1,3,0,4,17,15,0,36,181,254,105,0,576,3220,5693,3966,945,0, %T A309053 14400,86836,177745,161773,67251,10395,0,518400,3313296,7527688, %U A309053 8134513,4524085,1248483,135135 %N A309053 Triangular array T read by rows: T(r,c) is the number of double permutations of the integers from 1 to r which have exactly c different values visible when viewed from the left, in the sense that a higher number hides a lower one. %C A309053 Consider r rectangular cards stacked in a pile with their left and lower edges aligned. Each is of a different color and their widths and heights are independent permutations of the integers 1, 2, ..., r. Then the sequence gives the number of ways in which exactly c colors may be seen, where 0 <= c <= r. The values are entries in a triangular table read from left to right along successive rows from the top, each row giving the value of r and each column giving the value of c. Including a row in the triangle for r = 0 and treating the values as a list a(n) starting with n = 1, n = r(r+1)/2 + c + 1. %C A309053 For example, r = 2. If the widths of the cards from the top of the stack are 1,2 and the heights are 1,2 then two colors are seen; if the widths are 1,2 and the heights are 2,1 then two colors are seen; if 2,1 and 1,2 then two colors are seen; if 2,1 and 2,1 then only one color is seen. Thus the values for c = 1 and c = 2 are 1 and 3 respectively, i.e., a(5) = 1 and a(6) = 3. %C A309053 The sum of row r in the table is (r!)^2 and T(r,1) for r > 0 is ((r-1)!)^2. %H A309053 Zile Hui, <a href="https://arxiv.org/abs/2206.07052">Sequential Optimization Numbers and Conjecture about Edge-Symmetry and Weight-Symmetry Shortest Weight-Constrained Path</a>, arXiv:2206.07052 [cs.DS], 2022. %H A309053 Zile Hui, <a href="https://arxiv.org/abs/2411.17127">C sequential optimization numbers</a>, arXiv:2411.17127 [math.CO], 2024. See p. 8. %e A309053 The triangle up to r = 7 is: %e A309053 r\c 0 1 2 3 4 5 6 7 %e A309053 0 1 %e A309053 1 0 1 %e A309053 2 0 1 3 %e A309053 3 0 4 17 15 %e A309053 4 0 36 181 254 105 %e A309053 5 0 576 3220 5693 3966 945 %e A309053 6 0 14400 86836 177745 161773 67251 10395 %e A309053 7 0 518400 3313296 7527688 8134513 4524085 1248483 135135 %o A309053 (BASIC) %o A309053 r=5 %o A309053 fr=1 %o A309053 for i=2 to r : fr=fr*i : next i ' fr=r! %o A309053 dim perm(fr,r), a(fr,r), b(r), count(r), p(r) %o A309053 for i=1 to fr : for j=1 to r : a(i,j)=0 : next j : next i %o A309053 for i=1 to r : count(i)=0 : next i %o A309053 '*** now derive successive permutations p() and populate rows of perm() %o A309053 for k=0 to fr-1 %o A309053 for i=1 to r : p(i)=i : next i %o A309053 f=1 %o A309053 for j=2 to r %o A309053 f=f*(j-1) %o A309053 a=int(k/f) %o A309053 i=a mod j %o A309053 x=p(j-i) : p(j-i)=p(j) : p(j)=x %o A309053 next j %o A309053 for i=1 to r %o A309053 perm(k+1,i)=p(i) %o A309053 next i %o A309053 next k %o A309053 '*** %o A309053 '*** now determine which numbers are visible for each permutation and %o A309053 ' put in a() %o A309053 for k=1 to fr %o A309053 max=perm(k,1) %o A309053 a(k,perm(k,1))=1 %o A309053 for i=2 to r %o A309053 if perm(k,i)>max then max=perm(k,i) : a(k,perm(k,i))=1 %o A309053 next i %o A309053 next k %o A309053 '*** %o A309053 '*** now determine which numbers [b()], and how many [count()], are %o A309053 ' visible for each combination of permutations %o A309053 for i=1 to fr %o A309053 for j=1 to fr %o A309053 tb=0 %o A309053 for k=1 to r %o A309053 b(k)=0 : if a(i,k)=1 or a(j,k)=1 then b(k)=1 %o A309053 tb=tb+b(k) %o A309053 next k %o A309053 count(tb)=count(tb)+1 %o A309053 next j %o A309053 next i %o A309053 '*** %o A309053 for c=1 to r %o A309053 print c;" ";count(c) %o A309053 next c %Y A309053 Row sums and T(r,1) for r > 0 give A001044. %Y A309053 Main diagonal gives A001147. %Y A309053 Cf. A132393, giving the analogous table for a single permutation, i.e., cards varying only by width or by height. %K A309053 nonn,tabl,more %O A309053 0,6 %A A309053 _Ian Duff_, Jul 09 2019