A309054 a(1) = 0; for m >= 0, a(3m) = 1; for m >= 1, a(3m-1) = 2*a(m-1), a(3m+1) = 2*a(m+1).
1, 0, 2, 1, 4, 0, 1, 2, 4, 1, 8, 2, 1, 0, 8, 1, 2, 0, 1, 4, 2, 1, 8, 4, 1, 2, 8, 1, 16, 2, 1, 4, 16, 1, 2, 4, 1, 0, 2, 1, 16, 0, 1, 2, 16, 1, 4, 2, 1, 0, 4, 1, 2, 0, 1, 8, 2, 1, 4, 8, 1, 2, 4, 1, 16, 2, 1, 8, 16, 1, 2, 8, 1, 4, 2, 1, 16, 4, 1, 2, 16, 1, 32, 2, 1
Offset: 0
Examples
As 4 is congruent to 1 modulo 3, a(4) = a(3*1 + 1) = 2*a(1+1) = 2*a(2). As 2 is congruent to -1 modulo 3, a(2) = a(3*1 - 1) = 2*a(1-1) = 2*a(0). As 0 is congruent to 0 modulo 3, a(0) = 1. So a(2) = 2*a(0) = 2*1 = 2. So a(4) = 2*a(2) = 2*2 = 4.
Links
- Peter Munn, Table of n, a(n) for n = 0..4374
- Peter Munn, Arrowhead curve aligned with Sierpiński gasket.
- Wikipedia, Sierpiński arrowhead curve
Formula
a(A191108(i)) = 0 for i >= 1.
if a(n) = 2^k, a(3^(k+1)+n) = a(3^(k+1)-n) = 2^k.
a((m-1)*3^k + 1) = a((m+1)*3^k - 1) for k >= 1, all integer m.
Upper bound relations: (Start)
for k >= 1, let m_k = A034472(k-1) = 3^(k-1)+1.
a(n) < 2^k, for -m_k < n < m_k.
a(-m_k) = a(m_k) = 2^k.
(End)
Sum_{n=-3^k..3^k-1} (a(n) + 1) = 3 * 4^k.
Sum_{n=-3m..3m-1} (a(n) + 1) = 4 * Sum_{n=-m..m-1} (a(n) + 1) (conjectured).
Comments