A309076 The Zeckendorf representation of n read as a NegaFibonacci representation.
0, 1, -1, 2, 3, -3, -2, -4, 5, 6, 4, 7, 8, -8, -7, -9, -6, -5, -11, -10, -12, 13, 14, 12, 15, 16, 10, 11, 9, 18, 19, 17, 20, 21, -21, -20, -22, -19, -18, -24, -23, -25, -16, -15, -17, -14, -13, -29, -28, -30, -27, -26, -32, -31, -33
Offset: 0
Examples
10 is 8 + 2, or F_6 + F_3. a(10) is then F_{-5} + F_{-2} = 5 + (-1) = 4.
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 169.
- E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
Links
- Garth A. T. Rose, Table of n, a(n) for n = 0..1000
- Sean A. Irvine, Java program (github)
- Wikipedia, Zeckendorf's theorem
Programs
-
Sage
def a309076(n): result = 0 lnphi = ln((1+sqrt(5))/2) while n > 0: k = floor(ln(n*sqrt(5)+1/2)/lnphi) n = n - fibonacci(k) result = result + fibonacci(1 - k) return result
Comments