This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309079 #12 Jul 11 2019 19:14:16 %S A309079 1,2,3,4,5,3,4,8,9,10,5,5,6,7,8,16,17,18,19,6,7,8,9,9,10,11,6,7,8,9, %T A309079 10,32,33,34,35,36,9,10,11,10,11,12,13,14,15,11,12,17,18,19,20,7,8,9, %U A309079 10,11,12,13,14,8,9,10,11,64,65,66,67,68,69,70,71,12 %N A309079 For any n > 0: consider the strictly increasing finite sequences of integers whose concatenation of terms, in binary and without leading zeros, equals that of n; a(n) is the minimal sum of the terms of such a finite sequence. %C A309079 Any integer appear in the sequence: %C A309079 - for any m > 0 with binary expansion Sum_{k >= 0} b_k * 2^k, %C A309079 - let n = (Sum_{k >= 0} b_k * 2^Sum_{j >= k} ((1+j) * b_j))/2, %C A309079 - then a(n) = m, %C A309079 - for example (in binary): a("1101000") = "1" + "10" + "1000" = "1011". %H A309079 Rémy Sigrist, <a href="/A309079/b309079.txt">Table of n, a(n) for n = 1..8192</a> %H A309079 Rémy Sigrist, <a href="/A309079/a309079.gp.txt">PARI program for A309079</a> %F A309079 a(n) <= n with equality iff n is a power of two or the binary concatenation of 2^k and m for some k >= 0 and m <= 2^k. %F A309079 a(2*n) <= 2*a(n). %F A309079 a(2*n + 1) <= 2*a(n) + 1. %F A309079 a(A164894(k)) = A000225(k) for any k > 0. %e A309079 The first terms, alongside the corresponding finite sequences, are: %e A309079 n a(n) bin(n) bin(seq) %e A309079 -- ---- ------ -------- %e A309079 1 1 1 (1) %e A309079 2 2 10 (10) %e A309079 3 3 11 (11) %e A309079 4 4 100 (100) %e A309079 5 5 101 (101) %e A309079 6 3 110 (1,10) %e A309079 7 4 111 (1,11) %e A309079 8 8 1000 (1000) %e A309079 9 9 1001 (1001) %e A309079 10 10 1010 (1010) %e A309079 11 5 1011 (10,11) %e A309079 12 5 1100 (1,100) %e A309079 13 6 1101 (1,101) %e A309079 14 7 1110 (1,110) %e A309079 15 8 1111 (1,111) %e A309079 16 16 10000 (10000) %e A309079 17 17 10001 (10001) %e A309079 18 18 10010 (10010) %e A309079 19 19 10011 (10011) %e A309079 20 6 10100 (10,100) %e A309079 21 7 10101 (10,101) %o A309079 (PARI) See Links section. %Y A309079 Cf. A000225, A143789, A164894. %K A309079 nonn,base %O A309079 1,2 %A A309079 _Rémy Sigrist_, Jul 11 2019