This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309087 #9 Jul 14 2019 06:26:19 %S A309087 1,2,6,18,50,143,397,1088,2973,8093,22014,59861,162742,442396,1202589, %T A309087 3268996,8886090,24154933,65659949,178482278,485165168,1318815708, %U A309087 3584912818,9744803414,26489122097,72004899306,195729609397,532048240570,1446257064252 %N A309087 a(n) = Sum_{k >= 0} floor(n^k / k!). %C A309087 This sequence is inspired by the Maclaurin series for the exponential function. %C A309087 The series in the name is well defined; for any n > 0, only the first A065027(n) terms are different from zero. %H A309087 Wikipedia, <a href="https://en.wikipedia.org/wiki/Taylor_series#Exponential_function">Taylor series: Exponential function</a> %F A309087 a(n) ~ exp(n) as n tends to infinity. %F A309087 a(n) <= A000149(n). %F A309087 a(n) = A309104(n) + A309105(n). %e A309087 For n = 3: %e A309087 - we have: %e A309087 k floor(3^k / k!) %e A309087 - --------------- %e A309087 0 1 %e A309087 1 3 %e A309087 2 4 %e A309087 3 4 %e A309087 4 3 %e A309087 5 2 %e A309087 6 1 %e A309087 >=7 0 %e A309087 - hence a(3) = 1 + 3 + 4 + 4 + 3 + 2 + 1 = 18. %o A309087 (PARI) a(n) = { my (v=0, d=1); for (k=1, oo, if (d<1, return (v), v += floor(d); d *= n/k)) } %Y A309087 See A309103, A309104, A309105 for similar sequences. %Y A309087 Cf. A000149, A065027. %K A309087 nonn %O A309087 0,2 %A A309087 _Rémy Sigrist_, Jul 11 2019