This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309103 #6 Jul 14 2019 06:26:26 %S A309103 1,0,0,0,0,-1,-1,-2,-1,-3,0,1,0,-2,-1,-2,2,1,1,2,-2,2,0,-2,-3,0,-1,-2, %T A309103 0,-2,3,-8,1,-4,-3,-4,1,-2,1,-3,-2,-2,2,2,3,3,2,0,-5,-2,-3,-5,-2,-4,3, %U A309103 4,-2,-2,4,-7,3,5,3,5,0,-1,1,-8,6,-3,-1,8,-5,0,-6 %N A309103 a(n) = Sum_{k >= 0} (-1)^k * floor(n^k / k!). %C A309103 This sequence mimics the Maclaurin series for the function x -> exp(-x). %C A309103 The series in the name is well defined; for any n > 0, only the first A065027(n) terms are different from zero. %e A309103 For n = 3: %e A309103 - we have: %e A309103 k floor(3^k / k!) %e A309103 - --------------- %e A309103 0 1 %e A309103 1 3 %e A309103 2 4 %e A309103 3 4 %e A309103 4 3 %e A309103 5 2 %e A309103 6 1 %e A309103 >=7 0 %e A309103 - hence a(3) = 1 - 3 + 4 - 4 + 3 - 2 + 1 = 0. %o A309103 (PARI) a(n) = { my (v=0, d=1, s=+1); for (k=1, oo, if (d<1, return (v), v += s*floor(d); d *= n/k; s = -s)) } %Y A309103 See A309087 for similar sequences. %Y A309103 Cf. A065027. %K A309103 sign %O A309103 0,8 %A A309103 _Rémy Sigrist_, Jul 12 2019