This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309104 #10 Mar 18 2020 23:02:04 %S A309104 0,1,3,9,25,72,199,545,1487,4048,11007,29930,81371,221199,601295, %T A309104 1634499,4443044,12077466,32829974,89241138,242582585,659407853, %U A309104 1792456409,4872401708,13244561050,36002449653,97864804699,266024120286,723128532126,1965667148555 %N A309104 a(n) = Sum_{k >= 0} floor(n^(2*k+1) / (2*k+1)!). %C A309104 This sequence is inspired by the Maclaurin series for the hyperbolic sine function. %H A309104 Robert Israel, <a href="/A309104/b309104.txt">Table of n, a(n) for n = 0..2300</a> %H A309104 Wikipedia, <a href="https://en.wikipedia.org/wiki/Taylor_series#Hyperbolic_functions">Taylor series: Hyperbolic functions</a> %F A309104 a(n) ~ sinh(n) as n tends to infinity. %F A309104 a(n) <= A000471(n). %e A309104 For n = 5: %e A309104 - we have: %e A309104 k 5^(2*k+1)/(2*k+1)! %e A309104 - ------------------ %e A309104 0 5 %e A309104 1 20 %e A309104 2 26 %e A309104 3 15 %e A309104 4 5 %e A309104 5 1 %e A309104 >=6 0 %e A309104 - hence a(5) = 5 + 20 + 26 + 15 + 5 + 1 = 72. %p A309104 f:= proc(n) local t,k,v; %p A309104 v:= n; t:= n; %p A309104 for k from 1 do %p A309104 v:= v*n^2/(2*k*(2*k+1)); %p A309104 if v < 1 then return t fi; %p A309104 t:= t + floor(v); %p A309104 od %p A309104 end proc: %p A309104 map(f, [$0..30]); # _Robert Israel_, Mar 18 2020 %o A309104 (PARI) a(n) = { my (v=0, d=n); forstep (k=2, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) } %Y A309104 See A309087 for similar sequences. %Y A309104 Cf. A000471. %K A309104 nonn %O A309104 0,3 %A A309104 _Rémy Sigrist_, Jul 12 2019 %E A309104 Definition corrected by _Robert Israel_, Mar 18 2020