This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309105 #10 Aug 06 2020 15:29:36 %S A309105 1,1,3,9,25,71,198,543,1486,4045,11007,29931,81371,221197,601294, %T A309105 1634497,4443046,12077467,32829975,89241140,242582583,659407855, %U A309105 1792456409,4872401706,13244561047,36002449653,97864804698,266024120284,723128532126,1965667148553 %N A309105 a(n) = Sum_{k >= 0} floor(n^(2*k) / (2*k)!). %C A309105 This sequence is inspired by the Maclaurin series for the hyperbolic cosine function. %H A309105 Wikipedia, <a href="https://en.wikipedia.org/wiki/Taylor_series#Hyperbolic_functions">Taylor series: Hyperbolic functions</a> %F A309105 a(n) ~ cosh(n) as n tends to infinity. %F A309105 a(n) <= A000501(n). %e A309105 For n = 5: %e A309105 - we have: %e A309105 k 5^(2*k)/(2*k)! %e A309105 -- -------------- %e A309105 0 1 %e A309105 1 12 %e A309105 2 26 %e A309105 3 21 %e A309105 4 9 %e A309105 5 2 %e A309105 6 0 %e A309105 - hence a(5) = 1 + 12 + 26 + 21 + 9 + 2 = 71. %o A309105 (PARI) a(n) = { my (v=0, d=1); forstep (k=1, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) } %Y A309105 See A309087 for similar sequences. %Y A309105 Cf. A000501. %K A309105 nonn %O A309105 0,3 %A A309105 _Rémy Sigrist_, Jul 12 2019 %E A309105 Definition corrected by _Rémy Sigrist_, Aug 06 2020