This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309127 #11 Aug 30 2021 03:12:21 %S A309127 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,32,33,34,35,36,37,38,39,40,41,42, %T A309127 43,44,45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,96,97, %U A309127 98,99,100,101,102,103,104,105,106,107,108,109,110,111,128,129,130,131,132,133,134,135,136,137,138,139 %N A309127 a(n) = n + 2^4 * floor(n/2^4) + 3^4 * floor(n/3^4) + 4^4 * floor(n/4^4) + ... %C A309127 Partial sums of A300909. %H A309127 Seiichi Manyama, <a href="/A309127/b309127.txt">Table of n, a(n) for n = 1..10000</a> %F A309127 G.f.: (1/(1 - x)) * Sum_{k>=1} k^4 * x^(k^4)/(1 - x^(k^4)). %F A309127 a(n) ~ zeta(5/4)*n^(5/4)/5 - n/2. - _Vaclav Kotesovec_, Aug 30 2021 %t A309127 Table[Sum[k^4 Floor[n/k^4], {k, 1, n}], {n, 1, 75}] %t A309127 nmax = 75; CoefficientList[Series[1/(1 - x) Sum[k^4 x^(k^4)/(1 - x^(k^4)), {k, 1, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x] // Rest %o A309127 (PARI) a(n) = sum(k=1, n, k^4*(n\k^4)); \\ _Seiichi Manyama_, Aug 30 2021 %Y A309127 Cf. A013938, A024916, A300909, A309125, A309126. %K A309127 nonn %O A309127 1,2 %A A309127 _Ilya Gutkovskiy_, Jul 13 2019