This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309131 #54 Sep 08 2022 08:46:21 %S A309131 2,4,3,6,6,5,8,9,10,7,10,12,15,14,11,12,15,20,21,22,13,14,18,25,28,33, %T A309131 26,17,16,21,30,35,44,39,34,19,18,24,35,42,55,52,51,38,23,20,27,40,49, %U A309131 66,65,68,57,46,29,22,30,45,56,77,78,85,76,69,58,31 %N A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n. %C A309131 T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n). %C A309131 The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1). %C A309131 The k-th column of the triangle T gives the multiples of prime(1 + k). %C A309131 Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - _Michel Marcus_, Jul 15 2019 %H A309131 Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz matrix</a> %F A309131 T(n, k) = A025581(n, k)*A000040(1 + k). %e A309131 The triangle T(n, k) begins: %e A309131 ---+----------------------------------------------------- %e A309131 n\k| 0 1 2 3 4 5 6 7 8 %e A309131 ---+----------------------------------------------------- %e A309131 1 | 2 %e A309131 2 | 4 3 %e A309131 3 | 6 6 5 %e A309131 4 | 8 9 10 7 %e A309131 5 | 10 12 15 14 11 %e A309131 6 | 12 15 20 21 22 13 %e A309131 7 | 14 18 25 28 33 26 17 %e A309131 8 | 16 21 30 35 44 39 34 19 %e A309131 9 | 18 24 35 42 55 52 51 38 23 %e A309131 ... %e A309131 For n = 3 the matrix M(3) is %e A309131 2, 3, 5 %e A309131 M_{2,1}, 2, 3 %e A309131 M_{3,1}, M_{3,2}, 2 %e A309131 and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5. %p A309131 a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11); %t A309131 Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]] %o A309131 (Magma) [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output %o A309131 (PARI) %o A309131 T(n, k) = (n - k)*prime(1 + k); %o A309131 tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output %o A309131 (Sage) [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output %Y A309131 Cf. A025581, A318173, A325516. %Y A309131 Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal. %K A309131 nonn,easy,tabl %O A309131 1,1 %A A309131 _Stefano Spezia_, Jul 14 2019