A309150 Number of solutions of the Diophantine equation 1/n + 1/x = 1/y + 1/z, where n >= 1, x > n, y > n and z > y.
0, 2, 7, 12, 20, 29, 27, 41, 52, 60, 48, 101, 51, 96, 134, 93, 62, 142, 71, 209, 176, 114, 79, 264, 134, 136, 176, 256, 99, 363, 88, 217, 262, 178, 368, 406, 100, 180, 311, 469, 119, 471, 113, 386, 508, 182, 116, 552, 223, 353
Offset: 1
Keywords
Examples
n=2: 1/2 + 1/12 = 1/3 + 1/4, 1/2 + 1/30 = 1/3 + 1/5.
Programs
-
Mathematica
a[n_]:=Length@Solve[1/(n)+1/(x)==1/y+1/z&&x>n&&z>y&&y>n,{x,y,z},Integers]; Array[a,50]