This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309157 #28 Feb 12 2021 16:03:17 %S A309157 1,2,5,3,4,12,6,7,20,8,9,26,10,11,33,13,14,41,15,16,47,17,18,54,19,21, %T A309157 61,22,23,68,24,25,75,27,28,83,29,30,89,31,32,96,34,35,104,36,37,110, %U A309157 38,39,117,40,42,124,43,44,131,45,46,138,48,49,146,50,51 %N A309157 Rectangular array in 3 columns that solve the complementary equation c(n) = a(n) + b(2n), where a(1) = 1; see Comments. %C A309157 Let A = (a(n)), B = (b(n)), and C = (c(n)). A unique solution (A,B,C) exists for these conditions: (1) A,B,C must partition the positive integers, and (2) A and B are defined by mex (minimal excludant, as in A067017); that is, a(n) is the least "new" positive integer, and likewise for b(n). %H A309157 Clark Kimberling and Peter J. C. Moses, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Kimberling/kimb23.html">Complementary Equations with Advanced Subscripts</a>, J. Int. Seq. 24 (2021) Article 21.3.3. %e A309157 c(1) = a(1) + b(2) > = 1 + 3, so that %e A309157 a(2) = mex{1,2} = 3; %e A309157 b(2) = mex{1,2,3} = 4; %e A309157 c(1) = 5. %e A309157 Then c(2) = a(2) + b(4) >= 3 + 8, so that %e A309157 a(3) = 6, b(3) = 7; %e A309157 a(4) = 8, b(4) = 9; %e A309157 c(2) = a(2) + b(4) = 3 + 9 = 12. %e A309157 n a(n) b(n) c(n) %e A309157 -------------------- %e A309157 1 1 2 5 %e A309157 2 3 4 12 %e A309157 3 6 7 20 %e A309157 4 8 9 26 %e A309157 5 10 11 33 %e A309157 6 13 14 41 %e A309157 7 15 16 47 %e A309157 8 17 18 54 %e A309157 9 19 21 61 %e A309157 10 22 23 68 %t A309157 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A309157 a = b = c = {}; h = 1; k = 2; %t A309157 Do[Do[AppendTo[a, %t A309157 mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]]; %t A309157 AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}]; %t A309157 AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}]; %t A309157 {a, b, c} // ColumnForm %t A309157 a = Take[a, Length[c]]; b = Take[b, Length[c]]; %t A309157 Flatten[Transpose[{a, b, c}]] (* _Peter J. C. Moses_, Jul 04 2019 *) %Y A309157 Cf. A326663 (3rd column), %Y A309157 A101544 solves c(n) = a(n) + b(n), %Y A309157 A326661 solves c(n) = a(n) + b(3n), %Y A309157 A326662 solves c(n) = a(2n) + b(2n). %K A309157 nonn,tabf,easy %O A309157 1,2 %A A309157 _Clark Kimberling_, Jul 15 2019