A309158 The smallest prime, a(n), larger than prime(n) for which every even difference from 2 to prime(n) - 1 occurs at least once for some pair of primes from prime(n) to a(n) inclusive.
5, 11, 13, 23, 31, 47, 47, 53, 67, 67, 73, 101, 101, 107, 113, 131, 139, 151, 151, 151, 173, 179, 193, 193, 227, 227, 233, 241, 241, 283, 283, 293, 293, 313, 313, 353, 353, 353, 353, 397, 397, 397, 421, 421, 421, 461, 461, 467, 467, 503, 503, 503, 521, 563, 569, 599, 599
Offset: 2
Keywords
Examples
For n = 4, prime(4) = 7 and 7 - 1 = 6. Check differences for 7 and 11: 11 - 7 = 4. For 7, 11, and 13: 11 - 7 = 4, 13 - 7 = 6, 13 - 11 = 2, so a(4) = 13. Also prime(6) = 13, 13 - 1 = 12. For 13, 17, 19, 23, 29 and 31, 29 - 17 = 12, 23 - 13 = 10, 31 - 23 = 8, 19 - 13 = 6, 17 - 13 = 4, 19 - 17 = 2, and a(6) = 31.
Programs
-
Maple
for n from 2 to 58 do a := ithprime(n): for d from 2 by 2 to a - 1 do p := ithprime(n); while not isprime(p + d) do p := nextprime(p) od; if p + d > a then a := p + d fi od; print(n, a) od: # Peter Luschny, Jul 17 2019
-
Mathematica
For [n=2,n <= 101,n++, Clear[d];d=0; Clear[a];a=Prime[n]; While[d < Prime[n]-1, d=d+2; Clear[m];m=n; While[CompositeQ[d+Prime[m]],m++]; If[d+Prime[m] > a,a=d+Prime[m]]]; Print[{n,Prime[n],a,N[a/Prime[n]]}] ]
Comments