cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309228 a(n) is the greatest possible height of a binary tree where all nodes hold positive squares and all interior nodes also equal the sum of their two children and the root node has value n^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 3, 1, 3, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 1, 2, 1, 1, 3, 1, 2, 3, 1, 1, 1, 4, 1, 1, 3, 1, 2, 1, 1, 3, 3, 3, 1, 1, 3, 1, 2, 1, 3, 1, 1, 4, 1, 3
Offset: 1

Views

Author

Rémy Sigrist, Jul 16 2019

Keywords

Comments

The sequence is unbounded and for any k > 0, A309167(k) is the least n such that a(n) = k.

Examples

			a(1) = 1:
              1^2
               |
a(5) = 2:
           3^2    4^2
            \     /
             \   /
              5^2
               |
a(13) = 3:
          3^2    4^2
           \     /
            \   /
             5^2    12^2
              \      /
               \    /
                13^2
                  |
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local S,x,y;
       S:= map(t -> subs(t,[x,y]), {isolve(x^2+y^2=n^2)});
       S:= select(t -> type(t,list(posint)) and t[2]>=t[1], S);
       if S = {} then 1 else 1+max(map(procname,map(op,S))) fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 27 2022
  • Mathematica
    a = Table[1, {m = 100}];
    Do[Do[If[IntegerQ@ Sqrt[v2 = n^2-u^2], a[[n]] = Max[a[[n]], 1+Max[a[[u]], a[[Floor@ Sqrt[v2]]]]]], {u, 1, n-1}], {n, 1, m}];
    Table[a[[n]], {n, 1, m}] (* Jean-François Alcover, Aug 19 2022, after PARI code *)
  • PARI
    a = vector(87,n,1); for (n=1, #a, for (u=1, n-1, if (issquare(v2=n^2-u^2), a[n]=max(a[n],1+max(a[u],a[sqrtint(v2)])))); print1 (a[n]", "))

Formula

a(n) = 1 iff n belongs to A004144.
a(A309167(n)) = n.
If n^2 = u^2 + v^2 with u > v > 0, then a(n) >= 1 + max(a(u), a(v)).
Showing 1-1 of 1 results.