A309200 a(n) is the smallest divisor of the Catalan number C(n) = A000108(n) not already in the sequence.
1, 2, 5, 7, 3, 4, 11, 10, 13, 17, 14, 19, 20, 6, 9, 15, 22, 12, 21, 23, 26, 8, 18, 29, 28, 31, 34, 35, 37, 16, 41, 38, 30, 39, 43, 46, 47, 25, 49, 44, 27, 24, 36, 40, 42, 45, 51, 50, 52, 33, 53, 54, 55, 48, 57, 58, 59, 60, 61, 56, 63, 32, 65, 66, 67, 68, 69
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A309200
Programs
-
Maple
with(numtheory); # the general transformation f := proc(b) local t1,d,j,dlis,L,hit,i,n,a,n1; if whattype(b) <> list then RETURN([]); fi; n1:=nops(b); a:=[]; L:=10000; hit:=Array(0..L,0); for n from 1 to n1 do t1:=b[n]; dlis:=sort(convert(divisors(t1),list)); for j from 1 to nops(dlis) do d:=dlis[j]; if d > L then error("d too large",n,t1,d); fi; if hit[d]=0 then break; fi; od: a:=[op(a),d]; hit[d]:=1; od; [seq(a[i],i=1..nops(a))]; end; # the Catalan numbers C:=[seq(binomial(2*n,n)/(n+1),n=1..40)]; f(C);
-
PARI
\\ See Links section.
-
Sage
def transform(sup, fun): A = [] for n in (1..sup): D = divisors(fun(n)) A.append(next(d for d in D if d not in A)) return A A309200list = lambda lim: transform(lim, catalan_number) print(A309200list(29)) # Peter Luschny, Jul 26 2019
Extensions
More terms from Rémy Sigrist, Jul 25 2019
Comments