cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A164733 Number of n-digit fixed points under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 3, 1, 5, 1, 6, 2, 8, 2, 12, 3, 14, 5, 17, 7, 21, 8, 25, 12, 30, 14, 36, 17, 43, 21, 49, 25, 58, 31, 66, 36, 75, 43, 85, 49, 96, 58, 109, 66, 121, 75, 136, 86, 150, 96, 167, 109, 184, 121, 202, 136, 222, 150, 242, 167, 265, 185, 287, 202, 313, 222, 338
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Bisections: A309223, A309224.
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9). [From Joseph Myers, Sep 05 2009]

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) + a(n-9) - a(n-11) + a(n-14) - a(n-15) - a(n-16) + a(n-17) - a(n-20) + a(n-22) - a(n-23) + a(n-25) + a(n-29) - a(n-31) for n > 33.
G.f.: x*(-x^32 + x^31 - x^29 + x^28 - x^27 + x^26 - x^24 + 2*x^23 - x^22 + x^21 + x^20 + 2*x^18 - x^17 + x^16 + 2*x^15 - 3*x^14 + 2*x^13 - x^12 + x^11 - x^9 + 2*x^8 - x^6 + x^5 - x^4 + x^3 + 1)/(x^31 - x^29 - x^25 + x^23 - x^22 + x^20 - x^17 + x^16 + x^15 - x^14 + x^11 - x^9 + x^8 - x^6 - x^2 + 1). (End)

A309223 Bisection A164733(2*n).

Original entry on oeis.org

0, 1, 2, 2, 3, 5, 6, 8, 12, 14, 17, 21, 25, 30, 36, 43, 49, 58, 66, 75, 85, 96, 109, 121, 136, 150, 167, 184, 202, 222, 242, 265, 287, 313, 338
Offset: 1

Views

Author

N. J. A. Sloane, Aug 29 2019, following a suggestion from Manuj Mishra

Keywords

Comments

This sequence and the other bisection A309224 are initially very similar: there appear to be blocks of terms that are identical except that the initial terms differ by 1. For example, [30, 36, 43, 49, 58, 66, 75] here versus [31, 36, 43, 49, 58, 66, 75] in A309224. Is there a simple explanation? - N. J. A. Sloane, Aug 31 2019

Crossrefs

Showing 1-2 of 2 results.