cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309229 Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k).

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1
Offset: 1

Views

Author

Mats Granvik, Aug 10 2019

Keywords

Comments

log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k).
Partial sums of the symmetric matrix A191898. - Mats Granvik, Apr 12 2020
1 + Sum_{k=1..2*n} sign((sign(n+Sum_{j=2..k}-|T(n,j)|)+1)) appears to be asymptotic to sqrt(8*n). - Mats Granvik, Jun 08 2020
From Mats Granvik, Apr 14 2021: (Start)
Conjecture 1: For n>1: max(T(1..n,n)) + min(T(1..n,n)) = 2*mean(T(1..n,n)) = -A023900(n).
Patterns that eventually fail or possibly become switched are:
max(T(n,1..n!)) = 1,2,3,4,5,6,7,8,...
min(T(n,1..n!)) = 1,0,-2,-3,-7,-5,-11,-12,...
which are the first 8 terms of A275205.
Conjecture 2: The Prime Number Theorem should imply: mean(T(n,1..n!)) = 1.
(End)

Examples

			   1, 1, 1, 1, 1,  1, 1, 1, 1,  1,  1,  1,  1,  1, ...
   2, 0, 2, 0, 2,  0, 2, 0, 2,  0,  2,  0,  2,  0, ...
   3, 1, 0, 1, 3, -2, 3, 1, 0,  1,  3, -2,  3,  1, ...
   4, 0, 1, 0, 4, -3, 4, 0, 1,  0,  4, -3,  4,  0, ...
   5, 1, 2, 1, 0, -2, 5, 1, 2, -4,  5, -2,  5,  1, ...
   6, 0, 0, 0, 1,  0, 6, 0, 0, -5,  6,  0,  6,  0, ...
   7, 1, 1, 1, 2,  1, 0, 1, 1, -4,  7,  1,  7, -6, ...
   8, 0, 2, 0, 3,  0, 1, 0, 2, -5,  8,  0,  8, -7, ...
   9, 1, 0, 1, 4, -2, 2, 1, 0, -4,  9, -2,  9, -6, ...
  10, 0, 1, 0, 0, -3, 3, 0, 1,  0, 10, -3, 10, -7, ...
  11, 1, 2, 1, 1, -2, 4, 1, 2,  1,  0, -2, 11, -6, ...
  12, 0, 0, 0, 2,  0, 5, 0, 0,  0,  1,  0, 12, -7, ...
  13, 1, 1, 1, 3,  1, 6, 1, 1,  1,  2,  1,  0, -6, ...
  14, 0, 2, 0, 4,  0, 0, 0, 2,  0,  3,  0,  1,  0, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *)

Formula

Recurrence:
T(n, 1) = [n >= 1]*n;
T(1, k) = 1;
T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020
T(n,k) = Sum_{i=1..n} A191898(i,k).