cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309243 Completely multiplicative with a(p) = p * a(p-1) for any prime number p.

This page as a plain text file.
%I A309243 #16 Jul 20 2019 12:29:27
%S A309243 1,2,6,4,20,12,84,8,36,40,440,24,312,168,120,16,272,72,1368,80,504,
%T A309243 880,20240,48,400,624,216,336,9744,240,7440,32,2640,544,1680,144,5328,
%U A309243 2736,1872,160,6560,1008,43344,1760,720,40480,1902560,96,7056,800,1632,1248
%N A309243 Completely multiplicative with a(p) = p * a(p-1) for any prime number p.
%C A309243 All terms are distinct and belong to A064522.
%H A309243 Rémy Sigrist, <a href="/A309243/b309243.txt">Table of n, a(n) for n = 1..10000</a>
%F A309243 a(n) >= n with equality iff n is a power of 2.
%F A309243 a(n) is a multiple of n.
%F A309243 a(n) is a multiple of A000010(n).
%F A309243 A006530(a(n)) = A006530(n).
%F A309243 A053585(a(n)) = A053585(n).
%F A309243 Apparently, A007814(a(n)) = A064415(n).
%e A309243 a(2) = 2 * a(1) = 2.
%e A309243 a(5) = 5 * a(4) = 5 * a(2)^2 = 5 * 2^2 = 20.
%o A309243 (PARI) a(n) = my (f=factor(n), p=f[,1]~, e=f[,2]~); prod (i=1, #p, (p[i] * a(p[i] - 1))^e[i])
%Y A309243 Cf. A000010, A006530, A053585, A064415, A064522.
%K A309243 nonn,mult
%O A309243 1,2
%A A309243 _Rémy Sigrist_, Jul 17 2019