cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309260 Number of ways of placing 2n-1 nonattacking rooks on a hexagonal board with edge-length n in Glinski's hexagonal chess, inequivalent up to rotations and reflections of the board.

This page as a plain text file.
%I A309260 #48 Oct 24 2022 15:13:07
%S A309260 1,1,1,5,29,224,3012,55200,1259794,35488536,1200819600
%N A309260 Number of ways of placing 2n-1 nonattacking rooks on a hexagonal board with edge-length n in Glinski's hexagonal chess, inequivalent up to rotations and reflections of the board.
%C A309260 A rook in Glinski's hexagonal chess can move to any cell along the perpendicular bisector of any of the 6 edges of the hexagonal cell it's on (analogous to a rook in orthodox chess which can move to any cell along the perpendicular bisector of any of the 4 edges of the square cell it's on).
%H A309260 Alain Brobecker, <a href="http://abrobecker.free.fr/text/NonAttackingRooks.pdf">Non Attacking Rooks on Hexhex and Triangular boards</a>
%H A309260 Chess variants, <a href="https://www.chessvariants.com/hexagonal.dir/hexagonal.html">Glinski's Hexagonal Chess</a>
%H A309260 Vaclav Kotesovec, <a href="/A309260/a309260.jpg">All inequivalent solutions for n = 2,3,4 and 5</a>
%H A309260 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hexagonal_chess#Gli%C5%84ski&#39;s_hexagonal_chess">Hexagonal chess - GliƄski's hexagonal chess</a>
%e A309260 a(1) = 1
%e A309260 .
%e A309260   o
%e A309260 .
%e A309260 a(2) = 1
%e A309260 .
%e A309260    o .
%e A309260   . . o
%e A309260    o .
%e A309260 .
%e A309260 a(3) = 1
%e A309260 .
%e A309260     o . .
%e A309260    . . o .
%e A309260   . . . . o
%e A309260    o . . .
%e A309260     . o .
%e A309260 .
%e A309260 a(4) = 5
%e A309260 .
%e A309260      o . . .        o . . .        o . . .        . o . .        . o . .
%e A309260     . . o . .      . . o . .      . . . o .      o . . . .      . . . . o
%e A309260    . . . . o .    . . . . . o    . . . . . o    . . . . . o    o . . . . .
%e A309260   . . . . . . o  . o . . . . .  . . o . . . .  . . . o . . .  . . . o . . .
%e A309260    o . . . . .    . . . . . o    o . . . . .    . . . . . o    . . . . . o
%e A309260     . o . . .      . . o . .      . . . . o      o . . . .      o . . . .
%e A309260      . . o .        o . . .        . o . .        . o . .        . . o .
%e A309260 .
%Y A309260 Cf. A000903, A002047, A003215, A309746, A309669.
%K A309260 nonn,more,hard
%O A309260 1,4
%A A309260 _Sangeet Paul_, Jul 19 2019
%E A309260 a(1)-a(7) confirmed by _Vaclav Kotesovec_, Aug 16 2019
%E A309260 a(8) from _Alain Brobecker_, Dec 10 2021
%E A309260 a(8) confirmed by _Vaclav Kotesovec_, Dec 12 2021
%E A309260 a(9) from _Alain Brobecker_, Dec 13 2021
%E A309260 a(9) confirmed by _Vaclav Kotesovec_, Dec 18 2021
%E A309260 a(10)-a(11) from _Bert Dobbelaere_, Oct 24 2022