This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309262 #13 Jul 22 2019 12:00:23 %S A309262 0,1,0,0,1,1,1,1,0,1,1,1,1,1,1,1,3,3,2,2,2,2,2,2,2,3,3,3,3,3,3,3,1,1, %T A309262 1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8, %U A309262 8,8,8,8,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7 %N A309262 a(0) = 0, a(1) = 1, and for any n > 1, a(n) = Sum_{k > 1} a(floor(n/k^2)). %C A309262 For any n > 1 and k > A000196(n), a(floor(n/k^2)) = a(0) = 0, hence the series in the name is well defined. %C A309262 This sequence is a variant of A022825; here we sum terms of the form a(floor(n/k^2)), there terms of the form a(floor(n/k)). %H A309262 Rémy Sigrist, <a href="/A309262/b309262.txt">Table of n, a(n) for n = 0..10000</a> %e A309262 a(5) = a(floor(5/2^2)) = a(1) = 1. %t A309262 Join[{0}, Clear[a]; a[0]=0; a[1]=1; a[n_]:=a[n]=Sum[a[Floor[n/k^2]], {k, 2, n}]; Table[a[n], {n, 1, 100}]] (* _Vincenzo Librandi_, Jul 22 2019 *) %o A309262 (PARI) a(n) = if (n<=1, n, sum (k=2, sqrtint(n), a(n\k^2))) %Y A309262 Cf. A000196, A022825. %K A309262 nonn %O A309262 0,17 %A A309262 _Rémy Sigrist_, Jul 19 2019