This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309279 #14 Jul 23 2019 08:50:36 %S A309279 0,1,2,3,4,5,6,5,6,7,8,9,10,9,10,11,12,13,14,13,14,15,16,17,18,17,18, %T A309279 19,20,21,22,21,22,21,22,23,24,25,24,25,26,25,26,27,28,29,30,31,32,31, %U A309279 32,33,34,35,36,35,36,37,38,39,40,39,40,41,42,43,44,43,44,45,46,47,48,47,46 %N A309279 Langton's ant on a truncated trihexagonal tiling: number of black cells after n moves of the ant when starting on a dodecagon. %C A309279 On a white dodecagon, turn 30 degrees right, flip the color of the tile, then move forward one unit. %C A309279 On a black dodecagon, turn 30 degrees left, flip the color of the tile, then move forward one unit. %C A309279 On a white hexagon, turn 60 degrees right, flip the color of the tile, then move forward one unit. %C A309279 On a black hexagon, turn 60 degrees left, flip the color of the tile, then move forward one unit. %C A309279 On a white square, turn 90 degrees right, flip the color of the tile, then move forward one unit. %C A309279 On a black square, turn 90 degrees left, flip the color of the tile, then move forward one unit. %H A309279 Felix Fröhlich, <a href="/A309279/a309279.pdf">Illustration of iterations 0-50 of the ant</a>, 2019. %H A309279 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a309/A309279.java">Java program</a> (github) %H A309279 Wikipedia, <a href="https://en.wikipedia.org/wiki/Langton%27s_ant">Langton's ant</a> %H A309279 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_trihexagonal_tiling">Truncated trihexagonal tiling</a> %e A309279 See illustrations in Fröhlich, 2019. %Y A309279 Cf. A255938, A269757, A308590, A308937, A308973, A326167, A326352, A309064, A309166, A309241. %K A309279 nonn %O A309279 0,3 %A A309279 _Felix Fröhlich_, Jul 20 2019 %E A309279 More terms from _Sean A. Irvine_, Jul 22 2019