cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309281 Total sum of the sum of divisors of the element sum over all nonempty subsets of [n].

This page as a plain text file.
%I A309281 #31 Dec 20 2020 12:39:36
%S A309281 1,8,37,124,384,1088,2888,7480,18764,45852,110266,260935,609153,
%T A309281 1407089,3218496,7298207,16429096,36739434,81668800,180586647,
%U A309281 397394871,870673675,1900033959,4131237894,8952390226,19339847678,41660216922,89502201047,191809609673
%N A309281 Total sum of the sum of divisors of the element sum over all nonempty subsets of [n].
%H A309281 Alois P. Heinz, <a href="/A309281/b309281.txt">Table of n, a(n) for n = 1..600</a>
%F A309281 a(n) = Sum_{k=1..n*(n+1)/2} A309280(n,k).
%F A309281 a(n) = Sum_{k=1..2^n-1} sigma(A096137(n,k)).
%F A309281 a(n) = Sum_{k=1..n*(n+1)/2} sigma(k) * A053632(n,k).
%F A309281 a(n) = Sum_{k=1..n*(n+1)/2} k * A309402(n,k).
%F A309281 a(n) ~ Pi^2 * n^2 * 2^(n-3) / 3. - _Vaclav Kotesovec_, Aug 05 2019
%e A309281 The nonempty subsets of [3] are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, having element sums 1, 2, 3, 3, 4, 5, 6 with sums of divisors 1, 3, 4, 4, 7, 6, 12, having sum 37.  So a(3) = 37.
%p A309281 b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0],
%p A309281       b(n-1, m, s) +(g-> g+[0, g[1]*n])(b(n-1, m, irem(s+n, m))))
%p A309281     end:
%p A309281 a:= n-> add(b(n, k, 0)[2]/k, k=1..n*(n+1)/2):
%p A309281 seq(a(n), n=1..22);
%p A309281 # second Maple program:
%p A309281 b:= proc(n, s) option remember; `if`(n=0,
%p A309281       numtheory[sigma](s), b(n-1, s)+b(n-1, s+n))
%p A309281     end:
%p A309281 a:= n-> b(n, 0):
%p A309281 seq(a(n), n=1..30);
%t A309281 b[n_, s_] := b[n, s] = If[n==0, If[s==0, 0, DivisorSigma[1, s]], b[n-1, s] + b[n-1, s+n]];
%t A309281 a[n_] := b[n, 0];
%t A309281 Array[a, 30] (* _Jean-François Alcover_, Dec 20 2020, after 2nd Maple program *)
%Y A309281 Row sums of A309280.
%Y A309281 Cf. A000203, A000217, A000225, A053632, A096137, A309402, A309403.
%K A309281 nonn
%O A309281 1,2
%A A309281 _Alois P. Heinz_, Jul 20 2019