A309282 Decimal expansion of the circumference of a golden ellipse with a unit semi-major axis.
5, 1, 5, 4, 2, 7, 3, 1, 7, 8, 0, 2, 5, 8, 7, 9, 9, 6, 2, 4, 9, 2, 8, 3, 5, 5, 3, 9, 1, 1, 3, 3, 4, 1, 9, 5, 5, 2, 8, 7, 9, 7, 2, 2, 3, 5, 7, 0, 8, 6, 6, 1, 8, 2, 0, 7, 2, 9, 7, 2, 0, 0, 0, 2, 0, 5, 3, 9, 4, 3, 8, 1, 1, 3, 6, 1, 1, 0, 4, 6, 2, 2, 8, 4, 7, 8, 5
Offset: 1
Examples
5.154273178025879962492835539113341955287972235708661...
Links
- H. E. Huntley, The Divine Proportion: A Study in Mathematical Beauty, Dover, New York, 1970, page 65.
- H. E. Huntley, The Golden Ellipse, The Fibonacci Quarterly, Vol. 12, No. 1 (1974), pp. 38-40.
- Thomas Koshy, The Golden Ellipse and Hyperbola, in the book Fibonacci and Lucas Numbers with Applications, Wiley, 2001, chapter 26.
- M. C. Monzingo, A Note on the Golden Ellipse, The Fibonacci Quarterly, Vol. 14, No. 5 (1974), p. 388.
- A. D. Rawlins, A Note on the Golden Ratio, The Mathematical Gazette, Vol. 79, No. 484 (1995), p. 104.
- Stanislav Sýkora, Mathematical Constants, Stan's Library, Vol.II.
- Eric Weisstein's World of Mathematics, Ellipse.
- Wikipedia, Ellipse.
- Lightner Witmer, Zur experimentellen Aesthetik einfacher räumlicher Formverhältnisse, Philosophische Studien, Vol. 9 (1893), pp. 96-144.
Crossrefs
Programs
-
Mathematica
RealDigits[4 * EllipticE[1/GoldenRatio], 10, 100][[1]]
Formula
Equals 4*E(1/phi), where E(x) is the complete elliptic integral of the second kind.
Comments