A309310 Intersection of A046346 and (A046346-2).
70, 286, 646, 648, 18048, 26752, 39128, 40000, 55648, 60760, 64798, 72928, 73726, 164736, 167440, 174018, 298298, 324478, 332748, 352798, 361788, 373246, 434928, 649798, 719998, 862750, 871198
Offset: 1
Keywords
Examples
a(1)=70 is a term because 70=2*5*7 is divisible by 2+5+7=14 and 72=2^3*3^2 is divisible by 2*3+3*2=12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2000 (terms 1..200 from Robert Israel)
Crossrefs
Cf. A046346.
Programs
-
Maple
filter:= proc(n) local E,t; if isprime(n) then return false fi; E:= ifactors(n)[2]; n mod add(t[1]*t[2],t=E) = 0 end proc: A046346:= select(filter, {$2..10^6}): sort(convert(A046346 intersect map(`-`,A046346,2),list));
-
Mathematica
Select[Partition[Select[Range[2, 10^6], And[! PrimeQ[#], IntegerQ[#/Total[Times @@@ FactorInteger[#]]]] &], 2, 1], Subtract @@ # == -2 &][[All, 1]] (* Michael De Vlieger, Jul 22 2019 *) cdsQ[n_]:=CompositeQ[n]&&Divisible[n,Total[Times@@@FactorInteger[n]]]; SequencePosition[Table[If[cdsQ[n],1,0],{n,872000}],{1,,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jul 23 2019 *)
Comments