This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309313 #13 Dec 29 2020 10:49:55 %S A309313 1,1,19,540,23597,1381695,101682724,9016296289,935625630797, %T A309313 111226656560877,14903545528332565,2222230881719482634, %U A309313 364942065096639623872,65448490334085989020670,12726830901257817750060165,2667188536603107740647377075,599286881811684624273478547325 %N A309313 Number of simple labeled graphs on 2n nodes with exactly n connected components that are trees or cycles. %C A309313 (a(n)/n!)^(1/n) tends to 15.1198... - _Vaclav Kotesovec_, Aug 06 2019 %H A309313 Alois P. Heinz, <a href="/A309313/b309313.txt">Table of n, a(n) for n = 0..310</a> %F A309313 a(n) = A215861(2n,n). %p A309313 b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A309313 `if`(n=0, 1, add(binomial(n-1, i)*b(n-1-i, k-1)* %p A309313 `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) %p A309313 end: %p A309313 a:= n-> b(2*n, n): %p A309313 seq(a(n), n=0..20); %t A309313 b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0, %t A309313 If[n == 0, 1, Sum[Binomial[n - 1, i]*b[n - 1 - i, k - 1]* %t A309313 If[i<2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]]]; %t A309313 a[n_] := b[2n, n]; %t A309313 a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *) %Y A309313 Cf. A215861. %K A309313 nonn %O A309313 0,3 %A A309313 _Alois P. Heinz_, Jul 22 2019