A309315 Number of 5-colorings of an n-wheel graph.
60, 120, 420, 1200, 3660, 10920, 32820, 98400, 295260, 885720, 2657220, 7971600, 23914860, 71744520, 215233620, 645700800, 1937102460, 5811307320, 17433922020, 52301766000, 156905298060, 470715894120, 1412147682420, 4236443047200, 12709329141660
Offset: 3
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Prateek Bhakta, Benjamin Brett Buckner, Lauren Farquhar, Vikram Kamat, Sara Krehbiel, Heather M. Russell, Cut-Colorings in Coloring Graphs, Graphs and Combinatorics, (2019) 35(1), 239-248.
- Luis Cereceda, Janvan den Heuvel, Matthew Johnson, Connectedness of the graph of vertex-colourings, Discrete Mathematics, (2008) 308(5-6), 913-919.
- Eric Weisstein's World of Mathematics, Wheel Graph
- Wikipedia, Chromatic polynomial
- Wikipedia, Wheel graph
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Programs
-
PARI
Vec(60*x^3 / ((1 + x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jul 24 2019
Formula
a(n) = 5*3^(n-1)-15*(-1)^n.
From Colin Barker, Jul 24 2019: (Start)
G.f.: 60*x^3 / ((1 + x)*(1 - 3*x)).
a(n) = 2*a(n-1) + 3*a(n-2) for n>4.
(End)
Comments