cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A035109 Numerators in the expansion of the Dirichlet series zeta(s) * Product((1+p^-s) / (1-p^(1-s))), p > 2.

Original entry on oeis.org

1, 1, 5, 1, 7, 5, 9, 1, 17, 7, 13, 5, 15, 9, 35, 1, 19, 17, 21, 7, 45, 13, 25, 5, 37, 15, 53, 9, 31, 35, 33, 1, 65, 19, 63, 17, 39, 21, 75, 7, 43, 45, 45, 13, 119, 25, 49, 5, 65, 37, 95, 15, 55, 53, 91, 9, 105, 31, 61, 35, 63, 33, 153, 1, 105, 65, 69, 19, 125, 63, 73, 17, 75, 39
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of orbits of length n for the map SxT where S has one orbit of each length and T has one orbit of each odd length. - Thomas Ward, Apr 08 2009

Examples

			a(6) = (1/6)*(mu(6)*1*1 + mu(3)*3*1 + mu(2)*4*4 + mu(1)*12*4) = 5. - _Thomas Ward_, Apr 08 2009
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[1, #]*DivisorSum[ #, If[OddQ[#], #, 0]&]&]; Array[a, 80] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
  • PARI
    a(n)=(1/n)*sumdiv(n,d,moebius(n/d)*sigma(d)*sumdiv(d,e,if(e%2,e,0))) \\ Thomas Ward, Apr 08 2009

Formula

Dirichlet g.f.: zeta(s) * Product((1+p^-s) / (1-p^(1-s))), p > 2.
a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Sum_{e|d} e) * (Sum_{e|d, e odd only} e). - Thomas Ward, Apr 08 2009
From Ridouane Oudra, Jun 18 2025: (Start)
a(n) = (1/n) * Sum_{d|n} mu(n/d) * A000203(d) * A000593(d).
a(n) = Sum_{d|n} (psi(2*d) - 2*psi(d)), where psi = A001615.
a(n) = Sum_{d|n, d odd} psi(d).
a(n) = A309324(n) / gcd(n,2).
a(n) = A309324(A000265(n)).
a(n) = A060648(A000265(n)).
a(2*n) = a(n).
a(2*n+1) = A060648(2*n+1). (End)
From Vaclav Kotesovec, Jun 21 2025: (Start)
Dirichlet g.f.: (1 - 2^(1-s)) * zeta(s-1) * zeta(s)^2 / ((1 + 2^(-s)) * zeta(2*s)).
Sum_{k=1..n} a(k) ~ n^2/2. (End)
Showing 1-1 of 1 results.