This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309330 #24 Sep 06 2020 13:44:42 %S A309330 6,234,8886,337434,12813606,486579594,18477210966,701647437114, %T A309330 26644125399366,1011775117738794,38420810348674806, %U A309330 1458979018131903834,55402781878663670886,2103846732371087589834,79890773048222664742806 %N A309330 Numbers k such that 10*k^2 + 40 is a square. %C A309330 Sequence of all positive integers k such that the continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(10)). %C A309330 As 10*n^2 + 40 = 10 * (n^2 + 4), n == 6 (mod 10) or n == 4 (mod 10) alternately. - _Bernard Schott_, Jul 24 2019 %H A309330 Colin Barker, <a href="/A309330/b309330.txt">Table of n, a(n) for n = 1..600</a> %H A309330 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (38,-1). %F A309330 a(n) = 38*a(n-1) - a(n-2); a(1) = 6, a(2) = 234. %F A309330 a(n) = 2*sqrt(10*A097315(n-1)^2-1). %F A309330 a(n) = (3-sqrt(10))*(19-6*sqrt(10))^(n-1) + (3+sqrt(10))*(19+6*sqrt(10))^(n-1). - _Jinyuan Wang_, Jul 24 2019 %F A309330 G.f.: 6*x*(1 + x) / (1 - 38*x + x^2). - _Colin Barker_, Jul 24 2019 %F A309330 a(n) = 6*A097314(n-1). - _R. J. Mathar_, Sep 06 2020 %e A309330 a(2) = 234, and 10*234^2 + 40 is indeed a perfect square (it's 740^2) and furthermore the continued fraction [234, 234, 234, 234, ...] equals 117 + 37*sqrt(10), which is indeed in Q(sqrt(10)). %t A309330 LinearRecurrence[{38, -1}, {6, 234}, 15] %o A309330 (PARI) Vec(6*x*(1 + x) / (1 - 38*x + x^2) + O(x^20)) \\ _Colin Barker_, Jul 24 2019 %Y A309330 Cf. A097315. %K A309330 nonn,easy %O A309330 1,1 %A A309330 _Greg Dresden_, Jul 23 2019