This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309332 #44 Nov 16 2022 08:53:05 %S A309332 0,0,1,0,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,2,0,3,0,0,1,1,3,0,0,1,0,1,0, %T A309332 0,3,1,1,0,1,3,0,1,1,1,2,0,1,2,0,1,1,2,1,1,1,1,2,1,0,3,1,1,1,0,3,1,1, %U A309332 0,0,2,0,1,1,1,1,1,5,0,1,1,0,1,0,0,3,0,3,1,0,3,1,3,1,3,3,0,1,0,0,3,0,2,0,1 %N A309332 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the sum of two positive triangular numbers. %C A309332 The order doesn't matter. 21 = 6+15 = 15+6 are not counted as distinct solutions. - _N. J. A. Sloane_, Feb 22 2020 %H A309332 Alois P. Heinz, <a href="/A309332/b309332.txt">Table of n, a(n) for n = 1..20000</a> %F A309332 a(n) > 0 <=> n in { A012132 }. %F A309332 a(n) = 0 <=> n in { A027861 }. %F A309332 a(n) = 1 <=> n in { A108769 }. %e A309332 a(3) = 1: 2*3/2 + 2*3/2 = 3*4/2. %e A309332 a(21) = 2: 6*7/2 + 20*21/2 = 12*13/2 + 17*18/2 = 21*22/2. %e A309332 a(23) = 3: 9*10/2 + 21*22/2 = 11*12/2 + 20*21/2 = 14*15/2 + 18*19/2 = 23*24/2. %p A309332 a:= proc(n) local h, j, r, w; h, r:= n*(n+1), 0; %p A309332 for j from n-1 by -1 do w:= j*(j+1); %p A309332 if 2*w<h then break fi; %p A309332 if issqr((h-w)*4+1) then r:=r+1 fi %p A309332 od; r %p A309332 end: %p A309332 seq(a(n), n=1..120); %t A309332 a[n_] := Module[{h = n(n+1), j, r = 0, w}, For[j = n-1, True, j--, w = j(j+1); If[2w < h, Break[]]; If[ IntegerQ[Sqrt[4(h-w)+1]], r++]]; r]; %t A309332 Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Nov 16 2022, after _Alois P. Heinz_ *) %Y A309332 Cf. A000217, A001652, A012132, A027861, A046080 (the same for squares), A053141, A062301 (the same for primes), A108769, A309507. %K A309332 nonn %O A309332 1,21 %A A309332 _Alois P. Heinz_, Aug 01 2019