This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309337 #18 Jan 21 2024 02:16:23 %S A309337 0,1,6,27,48,125,162,343,384,729,750,1331,1296,2197,2058,3375,3072, %T A309337 4913,4374,6859,6000,9261,7986,12167,10368,15625,13182,19683,16464, %U A309337 24389,20250,29791,24576,35937,29478,42875,34992,50653,41154,59319,48000,68921,55566,79507,63888,91125 %N A309337 a(n) = n^3 if n odd, 3*n^3/4 if n even. %C A309337 Moebius transform of A078307. %H A309337 Amiram Eldar, <a href="/A309337/b309337.txt">Table of n, a(n) for n = 0..10000</a> %H A309337 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1). %F A309337 G.f.: x * (1 + 6*x + 23*x^2 + 24*x^3 + 23*x^4 + 6*x^5 + x^6)/(1 - x^2)^4. %F A309337 G.f.: Sum_{k>=1} J_3(k) * x^k/(1 + x^k), where J_3() is the Jordan function (A059376). %F A309337 Dirichlet g.f.: zeta(s-3) * (1 - 2^(1-s)). %F A309337 a(n) = n^3 * (7 - (-1)^n)/8. %F A309337 a(n) = Sum_{d|n} (-1)^(n/d + 1) * J_3(d). %F A309337 Sum_{n>=1} 1/a(n) = 25*zeta(3)/24 = 1.252142607457910713958... %F A309337 Multiplicative with a(2^e) = 3*2^(3*e-2), and a(p^e) = p^(3*e) for odd primes p. - _Amiram Eldar_, Oct 26 2020 %F A309337 a(n) = Sum_{1 <= i, j, k <= n} (-1)^(1 + gcd(i,j,k,n)) = Sum_{d | n} (-1)^(d+1) * J_3(n/d). Cf. A129194. - _Peter Bala_, Jan 16 2024 %t A309337 a[n_] := If[OddQ[n], n^3, 3 n^3/4]; Table[a[n], {n, 0, 45}] %t A309337 nmax = 45; CoefficientList[Series[x (1 + 6 x + 23 x^2 + 24 x^3 + 23 x^4 + 6 x^5 + x^6)/(1 - x^2)^4, {x, 0, nmax}], x] %t A309337 LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 6, 27, 48, 125, 162, 343}, 46] %t A309337 Table[n^3 (7 - (-1)^n)/8, {n, 0, 45}] %Y A309337 Cf. A000578, A016755, A059376, A078307, A129194, A193356, A309338. %K A309337 nonn,easy,mult %O A309337 0,3 %A A309337 _Ilya Gutkovskiy_, Jul 24 2019