This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309342 #10 Jul 24 2019 22:44:43 %S A309342 0,0,1,0,2,1,2,2,3,1,7,1,11,2,5,5,7,7,9,0,12,1,30,2,12,2,14,4,3,26,4, %T A309342 4,5,15,13,7,24,0,34,0,39,2,27,3,45,3,49,0,49,1,89,2,36,2,39,3,60,3, %U A309342 66,1,112,2,45,4,19,6,26,6,28,6,30,12,12,13,20,4 %N A309342 a(1) = 0, and for n >= 1, a(n+1) is the number of times the binary representation of a(n) appears in the concatenation of the binary representations of a(1), ..., a(n-1). %C A309342 This sequence is a binary variant of A276457. %C A309342 This sequence is necessarily unbounded. %H A309342 Rémy Sigrist, <a href="/A309342/b309342.txt">Table of n, a(n) for n = 1..10000</a> %H A309342 Rémy Sigrist, <a href="/A309342/a309342.png">Logarithmic scatterplot of the first 250000 terms</a> %H A309342 Rémy Sigrist, <a href="/A309342/a309342.pl.txt">Perl program for A309342</a> %e A309342 The first terms, alongside the binary representations of a(n) and of a(1), ..., a(n-1) with marks in front of occurrences of a(n), are: %e A309342 n a(n) bin(a(n)) bin(a(1)...a(n-1)) %e A309342 -- ---- --------- -------------------- %e A309342 1 0 0 %e A309342 2 0 0 [0 %e A309342 3 1 1 00 %e A309342 4 0 0 [0[01 %e A309342 5 2 10 00[10 %e A309342 6 1 1 00[10[10 %e A309342 7 2 10 00[10[101 %e A309342 8 2 10 00[10[101[10 %e A309342 9 3 11 001010[11010 %e A309342 10 1 1 00[10[10[1[10[10[1[1 %e A309342 11 7 111 00101011010[111 %o A309342 (Perl) See Links section. %Y A309342 Cf. A276457. %K A309342 nonn,base %O A309342 1,5 %A A309342 _Rémy Sigrist_, Jul 24 2019