This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309356 #11 Jul 25 2019 12:25:39 %S A309356 1,13,29,43,47,73,79,101,137,139,149,163,167,199,233,257,269,271,293, %T A309356 313,347,373,377,389,421,439,443,449,467,487,491,499,559,577,607,611, %U A309356 631,647,653,673,677,727,751,757,811,821,823,829,839,907,929,937,947,949 %N A309356 MM-numbers of labeled simple covering graphs. %C A309356 First differs from A322551 in having 377. %C A309356 Also products of distinct elements of A322551. %C A309356 A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %C A309356 Covering means there are no isolated vertices, i.e., the vertex set is the union of the edge set. %e A309356 The sequence of edge sets together with their MM-numbers begins: %e A309356 1: {} %e A309356 13: {{1,2}} %e A309356 29: {{1,3}} %e A309356 43: {{1,4}} %e A309356 47: {{2,3}} %e A309356 73: {{2,4}} %e A309356 79: {{1,5}} %e A309356 101: {{1,6}} %e A309356 137: {{2,5}} %e A309356 139: {{1,7}} %e A309356 149: {{3,4}} %e A309356 163: {{1,8}} %e A309356 167: {{2,6}} %e A309356 199: {{1,9}} %e A309356 233: {{2,7}} %e A309356 257: {{3,5}} %e A309356 269: {{2,8}} %e A309356 271: {{1,10}} %e A309356 293: {{1,11}} %e A309356 313: {{3,6}} %e A309356 347: {{2,9}} %e A309356 373: {{1,12}} %e A309356 377: {{1,2},{1,3}} %e A309356 389: {{4,5}} %e A309356 421: {{1,13}} %t A309356 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A309356 Select[Range[1000],And[SquareFreeQ[#],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&] %Y A309356 Simple graphs are A006125. %Y A309356 The case for BII-numbers is A326788. %Y A309356 Cf. A001222, A001358, A006129, A056239, A112798, A302242, A320458, A322551. %K A309356 nonn %O A309356 1,2 %A A309356 _Gus Wiseman_, Jul 25 2019