cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309372 a(n) = n^2 - n^3 + n^4.

This page as a plain text file.
%I A309372 #29 Aug 26 2019 04:57:11
%S A309372 0,1,12,63,208,525,1116,2107,3648,5913,9100,13431,19152,26533,35868,
%T A309372 47475,61696,78897,99468,123823,152400,185661,224092,268203,318528,
%U A309372 375625,440076,512487,593488,683733,783900,894691,1016832,1151073,1298188,1458975,1634256,1824877,2031708,2255643,2497600
%N A309372 a(n) = n^2 - n^3 + n^4.
%H A309372 Colin Barker, <a href="/A309372/b309372.txt">Table of n, a(n) for n = 0..1000</a>
%H A309372 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A309372 From _Colin Barker_, Aug 11 2019: (Start)
%F A309372 G.f.: x*(1 + 3*x)*(1 + 4*x + x^2) / (1 - x)^5.
%F A309372 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
%F A309372 (End)
%e A309372 a(4) = 4^2 - 4^3 + 4^4 = 16 - 64 + 256 = 208.
%o A309372 (Python)
%o A309372 for x in range(100):
%o A309372     print((x**2)-(x**3)+(x**4))
%o A309372 (PARI) concat(0, Vec(x*(1 + 3*x)*(1 + 4*x + x^2) / (1 - x)^5 + O(x^40))) \\ _Colin Barker_, Aug 11 2019
%Y A309372 Cf. A132998.
%K A309372 nonn,easy
%O A309372 0,3
%A A309372 _John H. Chakkour_, Aug 02 2019