A309376 a(n) appears in the congruences modulo 4 or 32 of Markoff numbers m(n) = A002559(n) for odd or even m(n).
0, 0, 1, 3, 7, 1, 22, 42, 6, 58, 108, 19, 246, 331, 399, 724, 1045, 1435, 202, 1890, 2269, 342, 3675, 7164, 8365, 1177, 10815, 12910, 1944, 18756, 24139, 33784, 48756, 6138, 73671, 106597, 124848, 128557, 20188, 231441, 284172, 39963, 336567, 360472, 421512, 62896, 605881, 730627, 819127, 110143, 1100122, 1656277, 232918, 2099832, 2306866, 2411752, 358911, 3445662
Offset: 1
Examples
a(3) = 1 because m(3) - 1 = 4 = a(3)*4. m(3) is odd. a(6) = 1 because m(6) - 2 = 32 = a(6)*32. m(6) is even.
References
- Martin Aigner, Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013, p. 55.
Crossrefs
Cf. A002559.
Formula
If m(n) is odd then a(n) = (m(n) - 1)/4, and if m(n) is even then a(n) = (m(n) - 2)/32, for the Markoff numbers m(n) = A002559(n), for n >= 1.
Comments