This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309388 #39 Aug 08 2019 02:59:35 %S A309388 1,3,4,7,8,11,12,15,16,19,23,28,31,32,36,40,43,47,52,59,60,63,64,67, %T A309388 71,72,79,83,87,88,96,100,103,107,108,112,127,128,131,136,139,148,151, %U A309388 156,163,167,172,176,179,180,183,187,191,192,196,199,211,223,227 %N A309388 Numbers y such that x*(x+1) + y*(y+1) = z*(z+1) does not have a solution in positive integers x, z with x <= y. %C A309388 The similar sequence A027861 (complement of A012132) is related to primes. %H A309388 Chai Wah Wu, <a href="/A309388/b309388.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..1000 from Robert Israel) %p A309388 filter:= proc(y) local S; %p A309388 S:= map(t -> subs(t, x), [isolve(x*(x+1)+y*(y+1)=z*(z+1))]); %p A309388 select(t -> t>0 and t<=y, S) = [] %p A309388 end proc: %p A309388 select(filter, [$1..300]); # _Robert Israel_, Aug 06 2019 %t A309388 max = 500; lst = {}; For[x = 1, x < max, x++, %t A309388 For[y = x, y < max, y++, %t A309388 For[z = y, z < max, z++, %t A309388 If[x (x + 1) + y (y + 1) == z (z + 1), %t A309388 lst = AppendTo[lst, y]]]]]; lst = %t A309388 Select[Union[lst], # < max/2 &]; Complement[Range[Length[lst]], lst] %o A309388 (Python) %o A309388 from sympy import integer_nthroot %o A309388 A309388_list, y, w = [], 1, 0 %o A309388 while len(A309388_list) < 10000: %o A309388 w += y %o A309388 z = 0 %o A309388 for x in range(1,y+1): %o A309388 z += x %o A309388 if integer_nthroot(8*(w+z)+1,2)[1]: %o A309388 break %o A309388 else: %o A309388 A309388_list.append(y) %o A309388 y += 1 # _Chai Wah Wu_, Aug 07 2019 %Y A309388 Complement of A308395. %Y A309388 Cf. A012132, A027861. %K A309388 nonn %O A309388 1,2 %A A309388 _Ralf Steiner_, Aug 02 2019