This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309402 #26 Jan 27 2021 10:09:38 %S A309402 1,3,1,1,7,3,3,1,1,1,15,7,5,3,3,2,2,1,1,1,31,15,11,7,7,5,4,3,3,3,2,2, %T A309402 1,1,1,63,31,23,15,13,11,9,7,7,6,5,5,4,4,4,3,2,2,1,1,1,127,63,43,31, %U A309402 25,21,19,15,14,12,11,10,9,9,8,8,7,7,6,5,5,4,3,2,2,1,1,1 %N A309402 Number T(n,k) of nonempty subsets of [n] whose element sum is divisible by k; triangle T(n,k), n >= 1, 1 <= k <= n*(n+1)/2, read by rows. %C A309402 T(n,k) is defined for all n >= 0, k >= 1. The triangle contains only the positive terms. T(n,k) = 0 if k > n*(n+1)/2. %H A309402 Alois P. Heinz, <a href="/A309402/b309402.txt">Rows n = 1..50, flattened</a> %F A309402 Sum_{k=1..n*(n+1)/2} k * T(n,k) = A309281(n). %F A309402 T(n+1,n*(n+1)/2+1) = A000009(n) for n >= 0. %e A309402 Triangle T(n,k) begins: %e A309402 1; %e A309402 3, 1, 1; %e A309402 7, 3, 3, 1, 1, 1; %e A309402 15, 7, 5, 3, 3, 2, 2, 1, 1, 1; %e A309402 31, 15, 11, 7, 7, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1; %e A309402 63, 31, 23, 15, 13, 11, 9, 7, 7, 6, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1; %e A309402 ... %p A309402 b:= proc(n, s) option remember; `if`(n=0, add(x^d, %p A309402 d=numtheory[divisors](s)), b(n-1, s)+b(n-1, s+n)) %p A309402 end: %p A309402 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)): %p A309402 seq(T(n), n=1..10); %t A309402 b[n_, s_] := b[n, s] = If[n == 0, Sum[x^d, %t A309402 {d, Divisors[s]}], b[n-1, s] + b[n-1, s+n]]; %t A309402 T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], %t A309402 {i, 1, Exponent[p, x]}]]; %t A309402 Array[T, 10] // Flatten (* _Jean-François Alcover_, Jan 27 2021, after _Alois P. Heinz_ *) %Y A309402 Column k=1 gives A000225. %Y A309402 Row sums give A309403. %Y A309402 Row lengths give A000217. %Y A309402 T(n,n) gives A082550. %Y A309402 Rows reversed converge to A000009. %Y A309402 Cf. A309280, A309281. %K A309402 nonn,look,tabf %O A309402 1,2 %A A309402 _Alois P. Heinz_, Jul 28 2019