cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309434 a(n) = floor(n*Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1)).

Original entry on oeis.org

6, 13, 20, 26, 33, 40, 46, 53, 60, 66, 73, 80, 87, 93, 100, 107, 113, 120, 127, 133, 140, 147, 154, 160, 167, 174, 180, 187, 194, 200, 207, 214, 220, 227, 234, 241, 247, 254, 261, 267, 274, 281, 287, 294, 301, 308, 314, 321, 328, 334, 341
Offset: 1

Views

Author

Karl V. Keller, Jr., Jun 06 2020

Keywords

Comments

This is the Beatty sequence for Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1).
This is the complement of A335137.
Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1) = (5 + sqrt(5))/2 + sqrt(5 + 2*sqrt(5)) = 6.695717525925148250774877410... = 2 + phi + tan(2*Pi/5) = A296184 + A019970.
For n < 10, a(n) = A109235(n).
Re(2*e^(i*Pi/5))/(Re(2*e^(i*Pi/5)) - 1) = (3 + sqrt(5))/2 = 1 + phi = phi^2 = A104457.
Floor(n*Re(2*e^(i*Pi/5))/(Re(2*e^(i*Pi/5)) - 1)) is A001950 (floor(n*phi^2)).

Examples

			For n = 3, floor(3*6.69571) = 20.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[n * Im[2 * Exp[I * Pi/5]]/(Im[2 * Exp[I * Pi/5]] - 1)]; Array[a, 100] (* Amiram Eldar, Jul 06 2020 *)
  • Python
    from sympy import floor, im, exp, I, pi
    for n in range(1, 101): print(floor(n*im(2*exp(I*pi/5))/(im(2*exp(I*pi/5)) - 1)), end=', ')
    
  • Python
    from sympy import floor, sqrt
    for n in range(1, 101): print(floor(n*((5 + sqrt(5))/2 + sqrt(5 + 2*sqrt(5)))), end=', ')