This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309443 #19 Aug 04 2019 01:38:26 %S A309443 4,1,2,4,4,3,3,4,0,4,2,1,1,1,4,2,2,3,3,2,3,4,2,3,2,0,3,4,2,1,4,3,3,3, %T A309443 4,4,0,3,2,0,0,2,4,2,3,4,4,1,4,4,1,3,1,2,2,0,3,0,1,1,3,2,0,0,0,1,2,1, %U A309443 4,2,1,0,4,0,2,1,4,0,0,3,1,0,4,1,2,4,2,0,1,4,4 %N A309443 Coefficients in 5-adic expansion of 4^(1/3). %H A309443 Robert Israel, <a href="/A309443/b309443.txt">Table of n, a(n) for n = 0..10000</a> %p A309443 op([1,3], padic:-rootp(x^3-4,5,101)); # _Robert Israel_, Aug 04 2019 %o A309443 (Ruby) %o A309443 require 'OpenSSL' %o A309443 def f_a(ary, a) %o A309443 (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i} %o A309443 end %o A309443 def df(ary) %o A309443 (1..ary.size - 1).map{|i| i * ary[i]} %o A309443 end %o A309443 def A(c_ary, k, m, n) %o A309443 x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m %o A309443 f_ary = c_ary.map{|i| x * i} %o A309443 f_ary[1] += 1 %o A309443 d_ary = [] %o A309443 ary = [0] %o A309443 a, mod = k, m %o A309443 (n + 1).times{|i| %o A309443 b = a % mod %o A309443 d_ary << (b - ary[-1]) / m ** i %o A309443 ary << b %o A309443 a = f_a(f_ary, b) %o A309443 mod *= m %o A309443 } %o A309443 d_ary %o A309443 end %o A309443 def A309443(n) %o A309443 A([-4, 0, 0, 1], 4, 5, n) %o A309443 end %o A309443 p A309443(100) %o A309443 (PARI) Vecrev(digits(truncate((4+O(5^100))^(1/3)), 5)) %Y A309443 Cf. A309444. %Y A309443 Digits of p-adic integers: %Y A309443 A269591, A269592 (5-adic, sqrt(-4)); %Y A309443 A210850, A210851 (5-adic, sqrt(-1)); %Y A309443 A290566 (5-adic, 2^(1/3)); %Y A309443 A290563 (5-adic, 3^(1/3)). %K A309443 nonn,base %O A309443 0,1 %A A309443 _Seiichi Manyama_, Aug 03 2019