This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309445 #13 Aug 04 2019 01:38:29 %S A309445 4,6,1,3,6,4,3,5,4,6,5,4,0,0,6,4,3,4,5,6,2,2,2,0,6,5,5,0,3,1,1,4,0,4, %T A309445 6,2,0,6,0,3,6,3,2,5,4,6,4,0,5,5,2,1,4,3,4,1,0,1,1,6,0,4,1,6,0,4,5,1, %U A309445 1,6,2,5,2,3,0,6,1,3,6,4,0,6,2,6,4,2,0,1,6,3,6,5,1,2,4,3,3,0,4,6,2 %N A309445 Coefficients in 7-adic expansion of 2^(1/5). %H A309445 Robert Israel, <a href="/A309445/b309445.txt">Table of n, a(n) for n = 0..10000</a> %p A309445 op([1,3], padic:-rootp(x^5-2,7,101)); # _Robert Israel_, Aug 04 2019 %o A309445 (Ruby) %o A309445 require 'OpenSSL' %o A309445 def f_a(ary, a) %o A309445 (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i} %o A309445 end %o A309445 def df(ary) %o A309445 (1..ary.size - 1).map{|i| i * ary[i]} %o A309445 end %o A309445 def A(c_ary, k, m, n) %o A309445 x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m %o A309445 f_ary = c_ary.map{|i| x * i} %o A309445 f_ary[1] += 1 %o A309445 d_ary = [] %o A309445 ary = [0] %o A309445 a, mod = k, m %o A309445 (n + 1).times{|i| %o A309445 b = a % mod %o A309445 d_ary << (b - ary[-1]) / m ** i %o A309445 ary << b %o A309445 a = f_a(f_ary, b) %o A309445 mod *= m %o A309445 } %o A309445 d_ary %o A309445 end %o A309445 def A309445(n) %o A309445 A([-2, 0, 0, 0, 0, 1], 4, 7, n) %o A309445 end %o A309445 p A309445(100) %o A309445 (PARI) Vecrev(digits(truncate((2+O(7^100))^(1/5)), 7)) %Y A309445 Cf. A309450. %Y A309445 Digits of p-adic integers: %Y A309445 A290566 (5-adic, 2^(1/3)); %Y A309445 A309446 (7-adic, 3^(1/5)); %Y A309445 A309447 (7-adic, 4^(1/5)); %Y A309445 A309448 (7-adic, 5^(1/5)); %Y A309445 A309449 (7-adic, 6^(1/5)). %K A309445 nonn,base %O A309445 0,1 %A A309445 _Seiichi Manyama_, Aug 03 2019