This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309451 #10 Aug 03 2019 14:19:22 %S A309451 0,5,26,75,1104,3505,20312,20312,4961570,28020774,229788809,512264058, %T A309451 2489590801,71696026806,71696026806,71696026806,19061942066578, %U A309451 218459525484184,451090039471391 %N A309451 The successive approximations up to 7^n for 7-adic integer 3^(1/5). %F A309451 a(0) = 0 and a(1) = 5, a(n) = a(n-1) + 2 * (a(n-1)^5 - 3) mod 7^n for n > 1. %e A309451 a(1) = ( 5)_7 = 5, %e A309451 a(2) = ( 35)_7 = 26, %e A309451 a(3) = ( 135)_7 = 75, %e A309451 a(4) = (3135)_7 = 1104. %o A309451 (PARI) {a(n) = truncate((3+O(7^n))^(1/5))} %Y A309451 Cf. A309446. %Y A309451 Expansions of p-adic integers: %Y A309451 A290568 (5-adic, 3^(1/3)); %Y A309451 A290800, A290802 (7-adic, sqrt(-6)); %Y A309451 A290806, A290809 (7-adic, sqrt(-5)); %Y A309451 A290803, A290804 (7-adic, sqrt(-3)); %Y A309451 A210852, A212153 (7-adic, (1+sqrt(-3))/2); %Y A309451 A290557, A290559 (7-adic, sqrt(2)); %Y A309451 A309450 (7-adic, 2^(1/5)); %Y A309451 A309452 (7-adic, 4^(1/5)); %Y A309451 A309453 (7-adic, 5^(1/5)); %Y A309451 A309454 (7-adic, 6^(1/5)). %K A309451 nonn %O A309451 0,2 %A A309451 _Seiichi Manyama_, Aug 03 2019