This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309454 #11 Aug 03 2019 14:19:42 %S A309454 0,6,20,265,1980,11584,11584,246882,1070425,29894430,29894430, %T A309454 1159795426,9069102398,9069102398,202847123212,2237516341759, %U A309454 2237516341759,201635099759365,1132157155708193,6017397949439540,17416293134812683,496169890920484689,1613261619087052703 %N A309454 The successive approximations up to 7^n for 7-adic integer 6^(1/5). %F A309454 a(0) = 0 and a(1) = 6, a(n) = a(n-1) + 4 * (a(n-1)^5 - 6) mod 7^n for n > 1. %e A309454 a(1) = ( 6)_7 = 6, %e A309454 a(2) = ( 26)_7 = 20, %e A309454 a(3) = ( 526)_7 = 265, %e A309454 a(4) = (5526)_7 = 1980. %o A309454 (PARI) {a(n) = truncate((6+O(7^n))^(1/5))} %Y A309454 Cf. A309449. %Y A309454 Expansions of p-adic integers: %Y A309454 A290800, A290802 (7-adic, sqrt(-6)); %Y A309454 A290806, A290809 (7-adic, sqrt(-5)); %Y A309454 A290803, A290804 (7-adic, sqrt(-3)); %Y A309454 A210852, A212153 (7-adic, (1+sqrt(-3))/2); %Y A309454 A290557, A290559 (7-adic, sqrt(2)); %Y A309454 A309450 (7-adic, 2^(1/5)); %Y A309454 A309451 (7-adic, 3^(1/5)); %Y A309454 A309452 (7-adic, 4^(1/5)); %Y A309454 A309453 (7-adic, 5^(1/5)). %K A309454 nonn %O A309454 0,2 %A A309454 _Seiichi Manyama_, Aug 03 2019