cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309466 Sum of the prime parts in the partitions of n into 5 parts.

This page as a plain text file.
%I A309466 #24 Jan 07 2022 09:02:16
%S A309466 0,0,0,0,0,0,2,7,11,28,41,67,88,136,169,248,295,413,496,652,772,1001,
%T A309466 1161,1469,1697,2096,2398,2923,3316,3975,4501,5302,5955,6953,7757,
%U A309466 8994,9988,11450,12674,14427,15883,17992,19741,22176,24268,27149,29569,32919
%N A309466 Sum of the prime parts in the partitions of n into 5 parts.
%H A309466 David A. Corneth, <a href="/A309466/b309466.txt">Table of n, a(n) for n = 0..9999</a>
%H A309466 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A309466 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (i * c(i) + j * c(j) + k * c(k) + l * c(l) + (n-i-j-k-l) * c(n-i-j-k-l)), where c is the prime characteristic (A010051).
%e A309466 The partitions of n into 5 parts for n = 10, 11, ..
%e A309466                                                        1+1+1+1+10
%e A309466                                                         1+1+1+2+9
%e A309466                                                         1+1+1+3+8
%e A309466                                                         1+1+1+4+7
%e A309466                                                         1+1+1+5+6
%e A309466                                             1+1+1+1+9   1+1+2+2+8
%e A309466                                             1+1+1+2+8   1+1+2+3+7
%e A309466                                             1+1+1+3+7   1+1+2+4+6
%e A309466                                             1+1+1+4+6   1+1+2+5+5
%e A309466                                             1+1+1+5+5   1+1+3+3+6
%e A309466                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
%e A309466                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
%e A309466                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
%e A309466                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
%e A309466                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
%e A309466                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
%e A309466         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
%e A309466         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
%e A309466         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
%e A309466         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
%e A309466         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
%e A309466         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
%e A309466         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
%e A309466 --------------------------------------------------------------------------
%e A309466   n  |     10          11          12          13          14        ...
%e A309466 --------------------------------------------------------------------------
%e A309466 a(n) |     41          67          88         136         169        ...
%e A309466 --------------------------------------------------------------------------
%e A309466 - _Wesley Ivan Hurt_, Sep 12 2019
%t A309466 Table[Total[Select[Flatten[IntegerPartitions[n,{5}]],PrimeQ]],{n,0,50}] (* _Harvey P. Dale_, Dec 31 2021 *)
%Y A309466 Cf. A010051, A309427, A309465, A309466, A309467, A309468, A309469, A309470, A309471.
%K A309466 nonn
%O A309466 0,7
%A A309466 _Wesley Ivan Hurt_, Aug 03 2019