cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324795 a(n) = 2*p(n)*p(n+2) - p(n+1)^2 where p(k) = k-th prime.

Original entry on oeis.org

11, 17, 61, 61, 205, 205, 421, 573, 585, 1185, 1173, 1501, 2005, 2349, 2737, 2985, 4185, 4173, 4741, 5889, 5877, 7173, 8181, 8569, 9781, 11005, 11005, 12301, 14917, 13477, 17637, 17649, 21505, 19777, 23985, 24577, 25869, 28509, 29857, 30585, 35617
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2019

Keywords

Comments

Theorem: a(n) > 0. Proof: Use p(n+1) <= 2 p(n)^2 for n > 4. (See Sándor et al.) QED

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter VII, p. 247, section VII.18.b.

Crossrefs

Cf. A056221 (if leading coefficient 2 is changed to 1), A327447 or A309487 (if 2 is changed to 4).

Programs

  • Mathematica
    With[{p = Prime[Range[50]]}, 2 * p[[1;;-3]] * p[[3;;-1]] - p[[2;;-2]]^2] (* Amiram Eldar, Apr 25 2024 *)

A327447 a(n) = 4*p(n-1)*p(n+1) - p(n)^2, where p(k) = k-th prime.

Original entry on oeis.org

31, 59, 171, 243, 579, 699, 1203, 1675, 2011, 3331, 3715, 4683, 5859, 6907, 8283, 9451, 12091, 12835, 14523, 17107, 17995, 21235, 24283, 26547, 29763, 32619, 33459, 36483, 42603, 43083, 52435, 54067, 62331, 61755, 70771, 73803, 78307, 84907, 89643, 93211, 103995, 103251, 113259, 114819, 126667, 132987, 141859
Offset: 2

Views

Author

N. J. A. Sloane, Sep 14 2019

Keywords

Comments

It follows from Sándor et al., Sect. VII.18(b) that a(n) > 0 for all n.

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter VII, p. 247, section VII.18(b).

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[50]]}, 4 * p[[1;;-3]] * p[[3;;-1]] - p[[2;;-2]]^2] (* Amiram Eldar, Apr 25 2024 *)
Showing 1-2 of 2 results.