This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309511 #16 Mar 13 2025 11:55:21 %S A309511 0,0,0,3,2,4,4,8,8,13,12,18,18,24,24,33,32,40,40,50,50,61,60,72,72,84, %T A309511 84,99,98,112,112,128,128,145,144,162,162,180,180,201,200,220,220,242, %U A309511 242,265,264,288,288,312,312,339,338,364,364,392,392,421,420 %N A309511 Number of odd parts in the partitions of n into 3 parts. %H A309511 Ray Chandler, <a href="/A309511/b309511.txt">Table of n, a(n) for n = 0..1000</a> %H A309511 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A309511 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1,1,-1,0,0,-1,1). %F A309511 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((i mod 2) + (j mod 2) + ((n-i-j) mod 2)). %F A309511 From _Colin Barker_, Aug 06 2019: (Start) %F A309511 G.f.: x^3*(3 - x + 2*x^2 + x^4 + x^5) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)). %F A309511 a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>10. %F A309511 (End) %F A309511 a(n) = 3*A069905(n) - A309513(n). - _Ray Chandler_, Mar 13 2025 %e A309511 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A309511 1+1+8 %e A309511 1+1+7 1+2+7 %e A309511 1+2+6 1+3+6 %e A309511 1+1+6 1+3+5 1+4+5 %e A309511 1+1+5 1+2+5 1+4+4 2+2+6 %e A309511 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A309511 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A309511 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A309511 ----------------------------------------------------------------------- %e A309511 n | 3 4 5 6 7 8 9 10 ... %e A309511 ----------------------------------------------------------------------- %e A309511 a(n) | 3 2 4 4 8 8 13 12 ... %e A309511 ----------------------------------------------------------------------- %t A309511 Table[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[n - i - j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}] %t A309511 Table[Count[Flatten[IntegerPartitions[n,{3}]],_?OddQ],{n,0,60}] (* _Harvey P. Dale_, Jan 16 2022 *) %K A309511 nonn %O A309511 0,4 %A A309511 _Wesley Ivan Hurt_, Aug 05 2019